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GENERAL INTRODUCTION 

Flash vacuum pyrolysls (FVP) Is a pyrolysis technique whereby the 

substrate Is volatilized under vacuum and passes in the gas phase into 

a hot zone where pyrolysis occurs. The products then pass out of the 

hot zone and condense in a cold zone. Because compounds are generated 

in the gas phase and quickly cooled, secondary reactions are minimized. 

Thus, two important uses of FVP have developed: (1) to prepare very 

reactive compounds which are stable only at low temperatures, and 

(2) to study, by product analysis, fundamental thermal reactions. This 

thesis is in three parts; in each part, FVP is used in one of these two 

ways. 

Parts I and III are studies on the thermal chemistry of hydro-

aromatic compounds. In part II, vinylketene, a very reactive compound, 

is prepared by FVP, characterized by Low-Temperature NMR, and allowed to 

react with itself and with cyclopentadiene. 

Explanation of Dissertation Format 

Each part is in the form of a full paper, suitable for publication 

in a professional journal. As such, each part has Its own numbering 

system and each part's references follow it. The research described 

in the Results and Experimental sections was done by the author. 
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PART I. FORMATION OF ANTHRACENES IN THE FLASH VACUUÎI PYROLYSIS OF 

BENZOCYCLOBUTENES AND DIMERS OF ORTHO-QUINODIMETHANES AND 

ITS IMPLICATIONS FOR THE DIENE MECHANISM OF AROMATIZATION 

IN HYDROCARBON PYROLYSIS 
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INTRODUCTION 

It Is generally held that aromatic compounds are formed in the 

pyrolysis of hydrocarbons by the breakdown of the feedstock to small 

1-4 
molecules which condense to form the aromatic rings. Several theories 

have been advanced through the years to explain how the aromatic rings 

5-9 
are formed. Central to every theory is the explanation of benzene 

(1) since it is generally the major product of aromatization and one 

0 
1 

of the first formed. Also, it is the simplest aromatic compound. 

One theory of aromatization, which was advanced early and still en­

joys wide acceptance, is the diene-synthesis theory.̂  It states that 

aromatic rings are formed by Diels-Alder reactions followed by dehy-

drogenation. Butadiene (2), which is produced early in hydrocarbon 

pyrolysis and is quickly consumed as arenes are formed, is believed to 

play a key role.̂ '̂ '̂  According to this theory, benzene was first, 

thought to arise by a Diels-Alder reaction between butadiene and ethylene 

(3) followed by dehydrogenation (reaction 1). However, evidence to the 

C - 0 - 0  
23 1 



www.manaraa.com

4 

contrary has accumulated which suggests that benzene is formed from the 

dimer of butadiene, 4-vinylcyclohexene (5, reaction 2).̂ "̂  It is the 

major component (43%) of the tar formed in the nitrogen flow pyrolysis 

of 5.® 

O 
Recently, a rather intriguing aromatization has surfaced whereby 

compounds related to £-quinodimethane (ô -xylylene) (6) pyrolytically 

CX 
form anthracene (7). The first report appeared in 1969, where 7 was 

formed as a minor product in the later stages of the static gas-phase 

pyrolysis of a-chloro-̂ -xylene (8) at 430°C (reaction 3).̂  ̂ We found 

a CHgCl CH-

that 8 also gives 7 by flash vacuum pyrolysis (FVP) (see Results). 

Recently, a report of a new synthon of benzocyclobutene (9) (the 
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valence tautomer of 6) described the formation of 7 and dihydroanthracene 

(10) in 18% and 8% yields, respectively, in the FVP of 1,2-bis(phenyl-

selenomethyl)benzene (11) at 600®C and 20 mm Hg (reaction 4).̂  ̂

QCsePh PhSeSePh + IQQ'  ̂
20 mm Hg 

11 12 13 9 4. 
47% 38% 

10 7 
8% 18% 

These results suggest that anthracene might be formed pyrolytically 

from 6 and/or 9. There are three reasons why this is intriguing. First, 

anthracene formation in hydrocarbon pyrolysis is of particular interest 

and this is a new and unexpected way to anthracene.How two 

molecules lose two carbon atoms towards formation of the central aromatic 

ring is not at all clear. Second, 6 and 9 have never before been impli­

cated in the formation of a polycyclic aromatic compound. It would be 

interesting to determine to what extent these basic units are involved 

in arene formation in hydrocarbon pyrolysis. Third, since 6 can be 

regarded as a diene, its condensation to anthracene would be analogous 

to butadiene (2) going to benzene (1). So what we leam about this 

reaction may be applicable to the formation of benzene in hydrocarbon 

pyrolysis. Therefore, this study was undertaken to examine anthracene 
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formation in the pyrolysis of such hydrocarbons as 9 and 14, the [4+4] 

dimer of 6. 

14 
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RESULTS 

Anthracene (7) was formed in 1-2% yield in the preparation of benzo-

cyclobutene (9) by the flash vacuum pyrolysis (FVP) of ot-chloro-̂ -xylene 

(8) (reaction It was deposited just outside the oven and was 

contaminated with minor amounts of dimeric compounds. 

21 
FVP of 14, prepared by thermal dimerization of 9 at 210°C, gave 

several isomers of 14 and a good yield of 7 depending on the pyrolysis 

temperature (reaction 5). Also, two minor products of molecular weight 

14 7 

192 (methylanthracenes?) (15 and 16) were also formed. The NMR of the 

pyrolyzate from FVP at 920°C showed that virtually no phenanthrene (17) 

was produced since there was no absorption around 6 8.62 where its 4-

17 18 

22 
and 5-protons resonate. Also, gas chromatography (gc) analysis showed 

that virtually no 9 or styrene (18) (the major product of pyrolysis of 
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23 
9) was produced. Formation of 17 was not determined by gc since it 

has about the same retention time as anthracene. The product distribu­

tion as a function of FVP temperature is tabulated (Table 1) and de­

picted graphically in Figure 1. As Figure 1 illustrates, the yields of 

most of the isomers of 14 peak at 920®, then drop off quickly. This is 

in contrast to the yields of anthracene (.7) and the two minor products 

of M.W. 192 (15 and 16) which peak at 980° and are slow to taper off. 

Also, Figure 1 illustrates how clearly dominant anthracene (7) is in 

the product mixture. 

Benzocyclobutene (9) was pyrolyzed at 770*C very rapidly to maxi­

mize bimolecular reactions in the hot zone. NMR and gc analysis indi­

cated the presence of ethylene (3) in the pyrolyzate. Several light 

compounds were produced such as styrene (18) which was the major com­

ponent of these in 3.8% yield. Also, many "dimeric" compounds were 

formed which were obviously the result of condensation of two molecules 

but not necessarily having twice the molecular weight of benzocyclo­

butene (9). The major ones are listed in Table 1 by their retention 

times in the gc and correlated with the products of the pyrolysis of 

the [4+4] dimer (14). In contrast to the FVP of 14, which gave essen­

tially only those compounds listed in Table 1, benzocyclobutene (9) 

gave numerous minor dimeric products not listed. Of the compounds 

listed, many appear to be the same compounds that are formed in the FVP 

of the [4+4] dimer (14) and these are listed as such. However, four 

major dimeric compounds (19, 21, 28, and 29) formed in the pyrolysis of 

benzocyclobutene (9) do not appear in the pyrolysis of the [4+4] dimer 
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Table 1. Yields of productŝ  in the FVP of benzocyclobutene (9) and 
of 5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene (14) 

Com­
pound 

Reten­
tion 
time, 
min 

Molec­ Absolute yields, % 
Com­
pound 

Reten­
tion 
time, 
min 

ular 
weight, 
m/e° 

From 9, 

770° 

From 14 Com­
pound 

Reten­
tion 
time, 
min 

ular 
weight, 
m/e° 

From 9, 

770° 720° 805° 902° 980° 1030° 

19 11.70 ? 1.0 
20 11.90 208 0.2 — 1.1 4.4 0.9 0.7 
21 12.20 ? 0.6 — —  •— — —  

22 12.70 208 0.3 1.5 2.6 0.6 — —  

23 13.20 208 0.3 1.8 3.7 1.0 — —  —— 

24 14.15 208 0 ? 1.0 3.2 0.8 0.5 
14 14.70 208 5.5 75.3 58.8 9.5 — —  

7 15.15 178 6.4 — —  4.9 25.1 33.0 31.3 
25 15.85 208 0.2 0.5 4.8 2.3 1.5 
26 16.82 208 0.5 . 3.8 5.7 6.6 —  —  — —  

27 17.48 208 0.9 4.3 9.0 3.7 3.0 
15 18.60 192 1.3 1.1 8.1 8.8 8.4 
28 19.44 ? 2.1 — —  —-

16 19.62 192 0.2 —  —  1.0 1.7 1.5 
29 19.71 ? 0.4 — 

30 20.55 206 0.2 — 0.6 — —  — —  

determined by gc by comparison of peak area to biphenyl internal 
standard. 

D̂etermined by gc/ms analysis of the pyrolyzate from FVP of 14 
at 920°C. 
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Figure 1. Yields of products as a function of FVP temperature in the 
FVP of 5,6,ll,12-tetrahydrodibenzo[a,e]cyclooctene (14). 
Data are from Table 1 
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(14) at any temperature. The major "dimeric" products of the pyrolysls 

of benzocyclobutene (9) are the [4+4] dlmer (14) (5.5%) and anthracene 

(7) (reaction 6). 

Gd 0 6 .  

Of the products common to both pyrolyses, the ratios of the yields 

to that of 14 were calculated for each pyrolysls. It was found that the 

ratio of each component from the pyrolysls of 9 generally lies between 

the corresponding ratios from the pyrolyses of 14 at 805° and 920°C 

(Table 2). 

Table 2. Ratios of yields of selected productŝ  to that of 5,6,11,12-
tetrahydrodibenzo[a,e]cyclooctene in the FVP of benzocyclobu­
tene (9) and of the [4+4] dlmer (14) at 720°, 805° and 920°C 

Re ten- Yield of compound/yield of 14 
Com­
pound 

tion 
time, 
mint* 

From 9, 

770° 720° 

From 14 

805° 920° 

20 11.90 0.04 0 0.02 0.46 
23 13.20 0.05 0.02 0.06 0.10 
26 16.82 0.09 0.05 0.10 0.69 
27 17.48 0.16 0 0.07 0.95 
15 18.60 0.24 0 0.02 0.85 
7 15.15 1.16 0 0.08 2.64 

P̂roducts were selected because they were major products in the 
FVP of 9 and of 14. 

R̂etention time in the gc trace. 
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To test the generality and the regioselectivity of the benzocyclo-

butene condensation, 1,2-naphthocyclobutene (31), prepared by FVP of 

24 
1-chloromethy1-2-methyInaphthalene (32, reaction 7), was pyrolyzed at 

890°C. A solid condensed just outside the hot zone which was shown by 

NMR and gc/ms to be a 1:1 mixture of dibenz[a,h]anthracene (33) and 

dibenz[a,j]anthracene (34) (reaction 8). 

CH„C1 
I FVP + HCl 

31 

7. 

31 
8. 

34 

The gc trace of the solid contained essentially just two peaks of nearly 

equal areas which were shown by gc/ms to each have the molecular weight 

of a dibenzanthracene. The NMR spectrum of the mixture identified the 

two compounds. It contained only aromatic resonances. Of these, the 

downfield absorptions (>68,0) fit exactly what one would expect for a 

mixture of dibenz[a,h]anthracene (33) and dibenz[a,j]anthracene (34) 

since these compounds have very characteristic absorptions in this 

, 22,25 
region. 

In a fashion analogous to the preparation of the [4+4] dimer (14), 
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naphthocyclobutene (31) was converted to a mixture of [4+4] dimers (35 

and 36, reaction 9). These gave 33 and 34 in 21% yield by FVP at 800° 

(reaction 10). 

31 

35 + 36 >-

36 

10. 

34 

As a probe into the mechanism of anthracene formation in the 

pyrolysis of 14, 37 and 38 were prepared and pyrolyzed separately to 

38 

determine the regiochemistry of anthracene formation. The methyl groups 

were chosen as labels since it was expected that they would not alter 

the chemistry of the dibenzocyclooctene nucleus. 
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The strategy in the synthesis of 37 and 38 was to prepare, by 

dlmerizatlon of the appropriate benzocyclobutene, a mixture of isomeric 

precursors which could easily be separated and then convert each isomer 

fcd the desired dimethyl derivative. The transoid and the cisoid di-

esters (39 and 40, respectively) were deemed suitable precursors since 

the ester groups, by virtue of their polarity, were expected to render 

them separable and be conveniently transformed to methyls. 

Compounds 39 and 40 were obtained as a 45:55 mixture starting from 

ester 43. This compound was then pyrolyzed to form the carbomethoxy-

substituted benzocyclobutene (44) which was dimerized in refluxing 

dlphenylether to afford the mixture of 39 and 40 (scheme 1). After 

purifying the mixture by distillation and column chromatography, 39 and 

40 were separated by fractional crystallization. 

Analysis by high-field NMR allowed the positive identification of 

both isomers. The dlbenzyl linkages in the transoid Isomer (39), which 

are Identical to each other, showed an AA'BB' pattern (Figures 2 and 3) 

while the same linkages in the cisoid isomer (40), which are different 

from each other, showed two singlets since all the protons on each link­

age are equivalent to one another on the NMR time scale (Figures 4 and 5). 

40 39 

£-toluic acid (41). This was chloromethylated and esterified to give 
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Figure 2. Proton NMR spectrum (300 MHz) of 2,8-dicarbomethoxy-5,6,ll,12-
tetrahydrodibenzo[a,e]cyclooctene (39) 
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Figure 3. Closeup of the AA'BB' pattern of the dimethylene bridges of 
2,8-dicarboinethoxy-5,6,11,12-tetrahydrodibenzo[a,e]cyclo-
octene (39) in the proton NMR spectrum (300 MHz) 
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Figure 4. Proton NMR spectrum (300 MHz) of 2,9-dlcarbomethoxy-5,6,ll,12-
tetrahydrodibenzo[a,e]cyclooctene (40) 
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Figure 5. Closeup of the aliphatic region of the proton NMR (300 MHz) 
of 2,9-dicarbomethoxy-5,6,11,12-tetrahydrodibenzo[a,e]cyclo-
octene (40) showing the singlets for the two dimethylene 
bridges and the carbomethoxy groups. The singlet due to the 
carbomethoxy groups of the other isomer (39) appears just 
downfield of the carbomethoxy signal of 40 
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Scheme 1: 

CH, 

COOH 

41 

(CHgO)̂  

HCl(g) 

H2SO4 

CH.Cl 
MeOH 

COOH COOMe 

CHoCl 
2 FVP 

COOMe 

+ HCl 

PhOPh 

The NMR spectra of the dlesters provided a check of the Isomeric 

purity determined by gc since the carbomethoxy signals for the two 

isomers have different chemical shifts. In the NMR of the cisoid 

diester (40), the signal for the carbomethoxy groups of the transoid 

impurity (39) appears as a tiny singlet at 63.433, just downfield of the 

signal for the carbomethoxy groups of 40 at 63.407 (Figure 5). The 

Isomeric purity of this sample of the cisoid diester (40), determined 

from the ratio of these peaks, was >99% which agreed with the gc results. 

The sample of the cisoid diester transformed to the dimethyl derivative 

(38) was 92% pure by gc. Likewise, the NMR spectrum of the transoid 

diester (39) contains a small singlet just upfield from the signal of 

the carbomethoxy groups of 39 (figure 2). The sample of transoid diester 

(39) converted to the dimethyl derivative (37) was actually purer by gc 
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(>99.2%) than the NMR sample (>99%). 

Reduction of the diesters was accomplished using established general 

27 
procedures. Treatment of 39 and 40 with lithium aluminum hydride (LAH) 

afforded the corresponding diols (45 and 46) which were converted to the 

2 8 
desired dimethyl compounds (37 and 38) by lithium and ammonia (Scheme 

2 ) .  

Scheme 2: 

1) Li/NH] 3 

2̂) NH,C1(S) 

HO LAH_' 
THF 

CH 

46 

The dimethyl compounds (37 and 38) could not be distinguished by 

Ĥ NMR (Figure 6), ̂ Ĉ NMR (Figure 7) or gc. There were slight differ­

ences in the melting points and infrared spectra. The isomeric purity 

of these compounds was assumed to be the same as the diesters (39 and 

40) whence they came. 

FVP of the transoid dimethyldibenzocyclooctene (37) at 920° gave 

a product mixture which was indistinguishable from the parent system by 

gc except that the retention times were longer due to the added methyl 
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Figure 6. Proton NMR spectra (90 MHz) of (a) 2,8-dimethyl-5,6,ll,12-
tetrahydrodibenzo[a,e]cyclooctene (37) and (b) 2,9-dimethyl-
5,6,11,12-tetrahydrodlbenzo[a,e]cyclooctene (38) 
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Figure 7. Carbon-13 NMR spectra (22.5 MHz) of (a) 2,8-dlmethyl-
5,6,ll,12-tetrahydrodibenzo[a,e]cyclooctene (37) and (b) 2,9-
dimethyl-S,6,11,12-tetrahydrodlbenzo[a,e]cyclooctene (38) 
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groups. Preparative thin layer chromatography (TLC) on alumina separated 

the anthracene products from the rest of the pyrolyzate. NMR analysis 

of this material showed it to be mostly 2,7-dimethylanthracene (47) with 

29 
some 2,6-dimethylanthracene (48) in a 96:4 mole ratio and another minor 

product (possibly a trimethylanthracene by analogy to the parent system) 

(Figures 8 and 9). The two isomers (47 and 48) were distinguished by 

29 
their 9- and 10-protons in the NMR spectrum. Whereas 47 showed two 

singlets at 68.20 and 8.30 (IH each), 48 showed one singlet at 68.25 

(2H) since its 9- and 10-protons are equivalent. The isomer ratio was 

determined by integration of these signals. The cisoid dimethyldibenzo-

cyclooctene (38) (92% isomeric purity) gave mostly the transoid 

dimethylanthracene (48) in a fashion identical to the pyrolysis of the 

transoid isomer (37). The dimethylanthracenes (47 and 48) are dis-

13 1 
tinguished by their C NMR spectra as well as their H spectra since 

47 has 8 different aromatic carbons while 48 has 7. Comparison of the 

NMR (Figure 10) and the NMR (Figure 11) of the TLC purified 

anthracenes clearly showed which isomer was the major product of each 

30 
pyrolysis. Also, after recrystallization, melting points and IR 

31 
spectra (Table 3) agreed with literature values. Thus, the formation 

of anthracenes in the pyrolysis of dibenzocyclooctenes is highly regio-

specific (Scheme 3). 
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Figure 8. Proton NMR spectrum (300 MHz) of the anthracene products from 
the FVP of 2,8-dlmethyl-5,6,ll,12-tetrahydrodibenzo[a,e]cyclo-
octene (37). 2,7-Dlmethylanthracene (47) is the major 
component 
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Figure 9. Closeup of the aromatic region of the proton NMR spectrum (300 
MHz) of the anthracene products from the FVP of 2,8-dimethyl-
5,6,ll,12-tetrahydrodibenzo[a,e]cyclooctene (37). The major 
component is 2,7-dimethylanthracene (47) 
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Figure 10. Proton NMR spectra (90 MHz) of the anthracene products from 
the EVP of (a) 2,8-dlmethyl-5,6,ll,12-tetrahydrodibenzo[a,e]-
cyclooctene (37) (the major component is 2,7-dimethylanthra-
cene (47)) and (b) 2,9-dimethyl-5,6,ll,12-tetrahydrodi-
benzo[a,e]cyclooctene (38) (the major component is 2,6-di-
methylanthracene (48)) 
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11. Carbon-13 NMR spectra (22,5 MHz) of the anthracene products 
from the FVP of (a) 2,8-dimethyl-5,6,ll,12-tetrahydrodi-
benzo[a,e]cyclooctene (37) (the major component is 2,7-di-
methylanthracene (47)) and (b) 2,9-dimethyl-5,6,ll,12-
tetrahydrodibenzo[a,e]cyclooctene (38) (the major component 
is 2,6-dimethylanthracene (48)) 
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Scheme 3 

Table 3. Comparison of IR data for 2,7- and 2,6-diinethylanthracenes 
(47 and 48) obtained by FVP of dimethyldibenzocyclooctenes 
(37 and 38) to literature valueŝ  

2,7-dimethylanthracene (47) 2.6-dimethylanthracene (48) 

a b Dif­ a b, Dif­
exptl. lit. ference exptl. lit. ference 
cm-1 valueŝ  (b-a) cm" -1 values® (b-a) 

(int.) cm~̂  (int.) cm-1 (int.) cm-1 (int.) cm-1 

1442 (m) 1463 (s) 21 1462 (m) 1474 (m) 12 
1363 (m) 1379 (m) 16 1442 (m) 1460 (m) 17 
1292 (m) 1310 (m) 18 1365 (m) 1378 Cm) 13 
1257 (m) 1273 (m) 16 1292 (m) 1305 (jn) 13 
1157 (m) 1174 (m) 17 1260 (m) 1273 (jn) 13 
1100 (w) 1120 (w) 20 1160 (m) 1171 (m) 11 
1018 (m) 1040 (m) 22 1128 (w) 1139 (v) 11 
943 (s) 962 (s) 19 1023 (m) 1041 (m) 18 
922 (w) 941 (w) 19 949 (s) 963 (s) 14 
896 (s) 916 (s) 20 929 (m) 942 (in) 13 
874 (vs) 896 (vs) 22 888 (vs) 905 (vs) 17 
839 (jn) 861 (m) 22 858 (s) 873 (s) 15 
770 (vs) 791 (vs) 21 111 (s) 793 (s) 16 
750 (m) 771 (m) 21 

R̂eference 31. 
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DISCUSSION 

Almost certainly the pyrolysis of 14 begins with homolysis of one 

of the bibenzyl bonds giving two benzylic radicals (reaction 11). 

Bibenzyl is known to readily cleave this way.̂  ̂ What happens after 

that must be the cause of the many isomers of 14. One can imagine a 

isomers of 14 11. 

number of hydrogen abstraction and ring formations that would isomerize 

14. It is somewhat surprising that there was very little reversion 

back to 6 and 9 (reaction 12). 

6 9 

The reaction that leads to anthracene is clearly favored over the 

others (Figure 1). A clue as to the nature of this reaction is found 

in the pyrolysis of 37 and 38. When these form the anthracenes, one of 

their aromatic rings is flipped 180° relative to the other. A reason­

able way to account for this is by the intermediacy of the ̂ -xylylene 

spirodimer (14', 37*, 38') in which 90° of the ring flip has occurred. 

Fragmentation of the spirodimer completes the ring flip, giving 
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ethylene with formation of a new phenyl-methylene bond and rearomatiza-

tion to give the 9,10-dihydroanthracene (10, 49, 50). A 1,4-eliminatlon 

of Hg, a well-known facile thermal reaction,completes the forma­

tion of anthracenes (7, 47, 48, Scheme 4). 

Scheme 4: 

12 3 
14, R =R =R =H „ 
37, R1=R3=CH3, Ro=H 
38, R1=R2=CH3, R/=H 

One reason why anthracene is the major product of the pyrolysis of 

14 must be that isomerization to 14* is preferred over other isomeriza-

tions. This is probably because both radical centers are satisfied in 

one step and, in fact, it might even be concerted since it is a 1,3-

3( 
shift of carbon which is thermally allowed by Woodward-Hoffmann rules. 

This is the first evidence that the two well-known dimers of jo-quinodi-

methane (14 and 14*) can interconvert. 
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Another reason why anthracene predominates is that there is con­

siderable driving force in the irreversible fragmentation since a small 

closed-shell molecule is split off and the aromatic ring is regenerated. 

A model of 14* indicates that there are basically two conformations of 

the central ring and in one of these, the exo-methylene group is 

directly above the carbon atom of the aromatic ring with which it forms 

a new bond. Indeed, in this conformation, the six atoms involved in 

the fragmentation-phenyl migration are oriented in roughly a boat form 

of a six-membered ring. This would facilitate a concerted reaction 

(Scheme 5).̂  ̂ On the other hand, in this conformation there appear 

to be considerable van der Waals forces which are relieved by a twist 

of the double bond to the exo methylene, enhancing its radical nature 

and promoting bonding to the aromatic ring. This would result in the 

diradical pictured in Scheme 6 which should quickly lose ethylene. 

The fragmentation-phenyl migration is analogous topologically to the 

Scheme 5 

14 10 10 
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Scheme 6: 

14 

-CHg= CH2 

10 

retroene reaction in which the fragmentation is accompanied by a hydrogen 

37 
migration (Scheme 7). In this regard, it is interesting to note that, for 

Scheme 7; 

retroene: 

CH„ 

•H 

CĤ  

 ̂ ™2 

CHr 

Phenyl̂  
Analogy 

14' 
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the related 1,5-shlft (reaction 13), the order of reactivity is hydrogen 

(R=H) > phenyl (R=Ar) > alkyl (R=CĤ ) in the only system in which a 

sigmatropic phenyl shift has been observed (phenylindenes) (reaction 

14). 
38 

R 

51 

13. 

51 

v.* 14. 
•H 

54 

This is the first time such a fragmentation has been recognized but 

it may be quite general, operating in heterocyclic chemistry as well as 

carbocyclic chemistry. In this laboratory, it has been shown to occur 

39 
in the FVP of the difurano-analogue of 14 (55, Scheme 8). In the 

Scheme 8: 

pO? 
55 

n -CH. = CH 

n 
56 

0 +H, 

57 
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literature, there are several reports of heterocyclic reactions which 

could be going by the same mechanism (see the Appendix). It will be shown 

later how this fragmentation may be operating in general hydrocarbon 

pyrolysis. 

Benzocyclobutene (9) seems to be giving anthracene by essentially 

the same mechanism. The results in Table 1 indicate that most of the 

major "dimeric" products of pyrolysis of 9 are the same compounds ob­

tained in the FVP of 14. Also, the ratios of these products to 14 in 

the pyrolysis of 9 are about what one would expect if they were formed 

by pyrolysis of first-formed 14, anthracene being no exception (Table 

2). Of course, it is possible that the spirodimer (14') that leads to 

anthracene is formed directly from 6, the open form of 9. Thus, a 

unified mechanism is proposed whereby both substrates form anthracene 

through the spirodimer of 6 (14', Scheme 9). 

CH2=CH2 

oco 
10 

cco 
7 
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Even though this is a new way to anthracene, the mechanism may be 

analogous to the way toluene (58) gives anthracene. While the details 

of this transformation are unclear, it is thought to occur by a combina­

tion of benzyl radicals.To give anthracene, two benzyl radi­

cals would first combine to give 6-benzyl-5-methano-l,3-cyclohexadiene 

(59). This compound is analogous to 14' and may eliminate to form 

10 in a fashion analogous to the fragmentation of 14'(Scheme 10). 

Scheme 10: 

.CH a-c CH2 4-
As noted earlier, benzene (1) is thought to arise in hydrocarbon 

pyrolysis through the intermediacy of 4-vinylcyclohexenê  ̂  (5, reac-

g 
tion 2). Badger and Novotny, who studied the pyrolysis of 5, favored 

a simple homolytic cleavage of the vinyl group to generate a cyclo-

hexenyl radical (60) which would give benzene by dehydrogenation (reac­

tion 15). They also suggested that just about every conceivable ring 

fragmentation probably occurs under their conditions(700°, Ng flow) 

H 

cr - o* - o 
5 60 1 

15. 
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forming radical and dlradical fragments. Some of these would be ex­

pected to give benzene by cyclization and dehydrogenation. Gil-Av and 

coworkerŝ  proposed mechanisms similar to reaction 15. This was only 

speculation on the part of these authors and until now there has not 

been any experiment reported which has a direct bearing on the mechanism 

of this transformation. Well, butadiene (2) -> 5 benzene (1) (reac­

tion 2) is analogous to o-xylylene (6) spirodimer (14') ->• anthracene 

(7) (Scheme 9), so perhaps benzene is formed from 5 by the same frag­

mentation (Scheme 11). 

Scheme 11: 

2 5 

14' 

2 

6 

CHgCs&CHg 

+ 

61 1 

CHgZaCHg 

+ 

10 

-H, 

7 

Not only does this mechanism explain the facile loss of two carbon 

35 atoms in going from 5 to 1, but the loss of from 61 is also facile. 

One of the problems with the original theory of benzene formation 
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(reaction 1) is that direct dehydrogenation of cyclohexenes to aromatics 

has not been established. 

It is interesting that one extreme of the diradical transition 

42 
state for the degenerate Cope rearrangement of 5 (62) is the same 

diradical one would draw for the formation of 61 by analogy to the frag­

mentation of 14' seen in Scheme 6. One could imagine that 5 undergoes 

several reversible Cope rearrangements until fragmentation occurs 

(Scheme 12). 

Scheme 12; 

6 
62 

y 
CHo + 

CH, 

61 

4-

The proposed transformation of dibenzocyclooctene (14) to the 

spirodimer (14 *) also has its analogy in the parent system. Cyclo-

octadiene (63) gives by pyrolysis primarily vinylcyclohexene (5) with 

some butadiene (2) (reaction 16)̂  ̂

o cr 16. 

63 
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Another major product of hydrocarbon thermal aromatization is 

4 8 
naphthalene (64). ' One can imagine this compound arising by the same 

mechanism provided a substantial amount of ô -xylylene (6) is formed 

(Scheme 13). Formation of £-xylylene in hydrocarbon pyrolysis is not out 

Scheme 13: 

of the question. In the pyrolysis of butadiene (2) at 550°C, xylenes are 

major products. At 700°C, there is a 62% decrease in the yield of 

jo-xylene (67).̂  This is coincident with dramatic increases in the yields 

of benzene and polycyclic aromatics (probably mostly naphthalene)® and 

lesser reductions in the yields of other Cg aromatics. It seems likely 

that some of the polycyclic aromatics are the result of pyrolysis of 

jo-xylene (67) possibly by the intermediacy of 6 (reaction 17, Scheme 

13). 

67 6 
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EXPERIMENTAL SECTION 

General 

The flash vacuum pyrolysls (FVP) apparatus was patterned after the 

32 one described by Trahanovsky ̂  Central to the apparatus was a 

vycor tube, 2.5 cm x 30 cm, packed in the central 10 cm with 1 cm x 8 mm 

pieces of vycor tubing and heated by a Lindberg furnace. At one end of 

the tube was the sample chamber attached by a 40/35 ground glass joint 

and containing the sample in a glass boat. At the other end, attached 

by o-ring joints was the product condenser; a u-tube immersed in a liquid 

nitrogen bath. Attached to the other end of the u-tube was an oil dif­

fusion pumping system, nitrogen inlet and cold cathode vacuum gauge. 

The temperature of the hot zone was measured by a thermocouple touching 

the outside of the tube at the center and connected to an Omega chromel-

alumel model 199 potentiometer with digital readout. When HCl was 

generated, a basket of KOH pellets was placed in the exit end of the 

u-tube (Figure 12). 

Gas chromatographic (gc) analysis was performed on a Hewlett Packard 

5840A gas chromatograph with a glass capillary column coated with 

methylsilicon fluid and a flame ionization detector. Retention times 

were reproducible to ±0.1 minute during the course of the study of 

benzocyclobutene (9) and dibenzocyclooctene (14). 

Gas chromatography/mass spectrometry analysis was with a Finnigan 

4000 gc/ms with INCOS Data system and Finnigan 9610 gc. Double Focusing 

mass spectra were obtained on an AEI MS902 high resolution ms. NMR 
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Oil Dffmslon 

Puvnp 

Lo vo 
cr 

Retentiometer 

 ̂-I96'C •* 

Figure 12. The flash vacuum pyrolysis (FVP) apparatus 
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spectra were recorded on either a Varian EM360, a JEOL FX90Q or a 

Nicolet NT300. Chemical shifts are reported in 6 values downfield from 

tetramethylsilane as an internal standard. Infrared spectra were re­

corded on a Beckman Acculab II with neat films or KBr pellets. Melting 

points were determined with a Thomas Hoover capillary melting point 

apparatus and are uncorrected. The commercially available chemicals 

used are listed in Table 4. 

Benzocyclobutene (9) 

20 
This compound was prepared according to the method of Morello. 

a-Chloro-o-xylene (7.25 g) was pyrolyzed by FVP at 765"C and 7x10 ̂  torr. 

After warming the contents of the u-tube under nitrogen to room tempera­

ture, the walls were rinsed down with pyridine (stored over KOH). The 

white precipitate which formed was filtered and the supernatant pyridine 

solution (30 mL) was heated for 1.5 h to destroy excess starting material, 

then shaken with HCl (10%, 520 mL). The aqueous solution was extracted 

with pentane and the organic layer was washed with HCl (10%, 9x50 mL) 

and CuSÔ  (sat., 3x50 mL) and dried over MgSÔ . The solvent was removed 

by distillation and the product was distilled under reduced pressure to 

give 3.05 g of 9 (57%); bp 64° (.34 mm Hg) [lit.̂  ̂bp 94.5°C (142 mm Hg) ] ; 

IR (neat) 1450, 1088, 992, 773, 700 cm"̂  (lit. IR̂  ̂10.03, 12.8, 14.0 y); 

1 20 
H NMR (60 MHz, 0001̂ )6 7.05 (m, 4H), 3.17 (s, 4H) (lit. NMR 5 7.0 

20 
(m, 4H); MS (70 eV) 104 (100), 103 (55), 78 (65), 77 (30) [lit. MS 

104 (100), 103 (54), 78 (63), 77 (28), 63 (14)]. Just outside the oven, 

a solid was deposited which was scraped out of the tube and washed with 
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Table 4. Commercially available compounds 

Compound Source 

Acetone 
Acetone-dg 
Alumina (neutral powder) 
Alumina TLC plates 
Ammonia (anhydrous) 

Ammonium chloride 
Anthracene 
Benzene 
Benzene-dg 
Biphenyl 
Carbon dioxide (s) (dry ice) 
Carbon disulfide 
Carbon tetrachloride 
Chloroform 
Chloroform-d 
l-Chloromethyl-2-methyl-
naphthalene 

a-Chloro-ô -xylene 
Copper (II) sulfate 
Diethylphthalate 
Dimethylsulfoxide-dg (DMSO-dg) 
Ethanol (absolute) 
Ether 
Ethyl acetate 
Ethylene 
Ethylene glycol 
Hexanes 
Hydrochloric acid 
Hydrogen chloride 
Isopropanol 
Lithium 
Lithium tetrahydroaluminate 
(LAH) 

Magnesium sulfate 
Methanol 
Methylene chloride 
Nitrogen (g) 
Nitrogen (1) 
Paraformaldehyde 
Pentane" 
Phenyl ether 
Potassium hydroxide 
Pyridine 

Fisher Scientific Co. 
Norell, Inc. 
J. T. Baker Chemical Co. 
Eastman Kodak Co. 
Matheson Division of Searle Medical 
Products USA, Inc. 
J. T. Baker 
MCB Manufacturing Chemists, Inc. 
Fisher 
Cambridge Isotope Laboratories 
Eastman Kodak 
Heller Carbonic 
Fisher 
Fisher 
Fisher 
Aldrich Chemical Co. 

Aldrich 
Aldrich 
J. T. Baker 
The Matheson Co., Inc. 
Columbia Organic Chemicals 
Worum Chemical Co. 
Fisher 
Fisher 
Matheson 
Mallinckrodt, Inc. 
Fisher 
Mallinckrodt 
Matheson 
Mallinckrodt 
Morton Thiokol, Inc. 

Morton Thiokol, Inc. 
J. T. Baker 
Fisher 
Fisher 
Quickway, Inc. 
Air Products and Chemicals, Inc. 
Eastman Kodak 
Mallinckrodt 
J. T. Baker 
J. T. Baker 
J. T. Baker 
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Table 4. (Continued) 

Compound Source 

Silica gel 60 (230-400 mesh) E. Merck, Darmstadt, Germany 
Silica gel TLC plates Eastman Kodak 
Sodium bicarbonate J. T. Baker 
Sodium chloride J. T. Baker 
Sodium hydroxide J. T. Baker 
Sulfuric acid Captree Chemical Corp. 
Tetrahydrofuran Fisher 
Te t rame thyIs ilane (TMS) Norell, Inc. 
Toluene Fisher 
2-Toluic acid Aldrich 

acetone to yield 66.8 mg (1.5%). This was shown by gc and NMR to be 

mostly anthracene (96% pure by gc): NMR (60 MHz, 0001̂ )6 8.44 (s, 

22 
2H), 8.10-7.94 (m, 4H), 7.58-7.37 (m, 4H) [lit. NMR 68.36 (2H), 7.93 

(4H), 7.39 (4H)]. 

5,6,11,12-Tetrahydrodibenzo[a,e]cyclooctene (14) 

This compound was prepared according to the method of Jensen et al. 

Benzocyclobutene (9) (2.5 g) was placed in a constricted test tube and 

degassed by 3 freeze-pumjp-thaw cycles. The tube was sealed under vacuum 

and heated for 5 days at 210°C during which a green fluorescent color 

developed. Upon cooling, the reaction mixture became quite viscous. It 

was dissolved in benzene and analyzed by gc/ms which indicated only a 

trace of benzocyclobutene (9), two dimeric components in the ratio of 

5:2 and several trimers. Distillation (Kugelrohr, pot 100-130°, 0.15 

torr) afforded a white crystalline product mixed with a lesser amount 

of liquid (0.7 g). Washing the solid with hexanes provided 0.36 g of 
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14 (14.4%) which was 97.7% pure by gc: mp 106-108°C (lic.̂  ̂mp 109.4-

109.9°C); IR (KBr) 1470, 1435, 1318, 1290, 1210, 1145, 1070, 1030, 915, 

848, 730 cm"̂ ; NMR (60 MHz, 0001̂ )6 7.00 (s, 8H), 3.05 (s, 8H) 

[lit.46 NMR (CCl̂ )S 6.88 (s, 8H), 3.02 (s, 8H)]; NMR (22.5 MHz, 

CDClg)̂  140.58, 129.64, 126.06, 35.16; MS (70 eV) 208 (67), 193 (100), 

179 (20), 178 (37), 117 (23), 116 (36), 115 (34), 104 (60), 103 (41), 

91 (21), 89 (13), 78 (40), 77 (21), 51 (13). 

1,2-Naphthocyclobutene (31) 

This compound was prepared following the procedure of Ewing and 

Boekelheide.̂ 4 l-Chloromethyl-2-methylnaphthalene (32) (4.7 g) was 

pyrolyzed by FVP at 725°C and 2x10 ̂  torr. The sample chamber was heated 

to 80°C to volatilize the substrate. After most of the sample had 

transferred, the u-tube was warmed to room temperature under Ng and 

rinsed down with CHgClg. Some of the product was a rubbery, sticky 

insoluble mass. The soluble product was coated on alumina, then eluted 

through a column of alumina. The fractions containing 31 were concen­

trated to give 2.0 g. Distillation (Kugelrohr, pot 85-115°, 0.11 mm 

Hg) afforded only 1.0 g (26%) [lit.̂ ? bp 98" (1-2 mm Hg)]: Ĥ NMR (60 

MHz, 00013)6 7.87-7.11 (m, 6H), 3.41-3.12 (m, 4H) [lit.̂  ̂NMR (100 MHz, 

CDClg)̂  7.90-7.14 (m, 6H), 3.46-3.20 (m, 4H)]. 

1,2,7,8- and 1,2,9,lO-Dibenzo-5,6,11,12-tetrahydrodi-
benzo[a,e]cyclooctene (35 and 36) 

The [4+4] dimers of 1,2-naphthocyclobutene (31) were prepared by 

an adaptation of Cava and Deana's method of solution pyrolysiŝ  ̂by 
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heating a solution of 31 (0.59 g) in diethylphthalate (10 mL) to reflux 

under for Ih. The solution was then stirred with NaOH (15%, 50 mL) 

at 40° for 12 h. The resulting mixture was extracted with toluene and 

the organic layer was washed with brine, dried over MgSÔ , filtered and 

concentrated. The residue was chromatographed on alumina (neutral) 

(10% benzene in hexanes elution) and the fractions containing 35 and 

36 were combined and concentrated to give 110 mg (18%). Gc analysis 

showed a 49:51 ratio of isomers (86% pure): NMR (60 MHz, CDClg)ô 

8.2-6.7 (m, 12H), 3.7-1.9 (m, 8H). 

Methyl 3-chloromethyl-4-methylbenzoate (43) 

The acid (42) was prepared by chloromethylation of £-toluic acid 

(41) following the procedure of Matsukawa et al. Acid 41 (78 g, 0.57 

mole) was added over a period of 0.5 h to a stirred solution of 

paraformaldehyde (18 g, 0.6 mole CHgO) in HgSÔ  (400 mL) as HCl (g) was 

bubbled through the solution. The temperature was maintained between 

30° and 40°C during addition and for one h after. The solution was 

then poured onto 2 L ice-water discharging the dark color that had 

developed and forming a white solid. The solid was filtered, washed 

3 times with Ĥ O and dried in a vacuum desiccator to give 161 g of 

crude 42. The acid was esterified without purification by mixing with 

methanol (1 L) and HgSÔ  (3 mL) and heating on the steam bath under Ng 

to reflux for 10 h which caused dissolution of the solid. The resulting 

solution was partitioned between water (2 L) and ether. The organic 

layer was washed with NaOH (1 M) and brine, dried over MgSÔ , filtered 

and concentrated. Fractional distillation and recrystallization 
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afforded 18.1 g of 43 (16%); bp 85-98°C (0.1 nun Hg); m.p. 56-62°C; 

IR (KBr) 1710, 1425, 1285, 1250, 1208, 1180, 1108, 990, 750, 723, 657 

—1 1 
cm ; H NMR (60 MHz, CC1̂ )<5 7.90 (br. s, IH), overlapping with 7.84 

(d of d, = 8 Hz, Jg = 2 Hz, IH), 7.18 (d, J = 8 Hz, IH), 4.57 

(s, 2H), 3.85 (s, 3H), 2.48 (s, 3H); MS (70 eV) 200 (19), 198 (38), 

167 (57), 163 (100), 139 (31), 135 (32), 104 (32), 103 (56), 78 (32), 

77 (52); Ĉ Ĥ̂ ĈlOg: calculate 198.04476, measure 198.04450 (error: 

-1.3 ppra). 

3-Carbomethoxybicydo[4.2.0]octa-1,3,5-triene (44) 

Methyl 3-chloromethyl-4~methylben2oate (43) (15 g) was 

pyrolyzed by FVP at 785°C and 7x10 ̂  torr. The product was taken up in 

ether, washed with NaHCÔ  (sat.) and brine, dried over MgSÔ , filtered 

and concentrated. Distillation afforded 8.84 g of 44 (72%) as a yellow 

liquid; bp 75°C (3 mm Hg); IR (neat) 1710, 1430, 1322, 1270, 1238, 

1183, 1130, 1090, 762, 722; ̂ H NMR (60 MHz, 00013)6 7.95 (d of d, = 

8 Hz, Jg = 2 Hz, IH), 7.72 (br. s, IH), 7.10 (d, J = 8 Hz, IH), 

3.88 (s, 3H), 3.12 (s, 4H), MS (70 eV) 162 (78), 131 (100), 103 (70), 

102 (31), 77 (70); Ĉ o"ĵ O°2' calculated 162.06808, measured 162.06788 

(error; -1.2 ppm). 

2,8- and 2,9-Dicarbomethoxy-5,6,11,12-tetrahydro-
dibenzo[a,e]cyclooctene (39 and 40) 

The carbomethoxybenzocyclobutene (44) (8 g) was added to a Ng-

fluahed flask with phenyl ether (100 mL) which was passed through a 

column of alumina directly into the flask. The solution was heated to 
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reflux under for 2 h and allowed to cool. The solvent was removed 

by distillation under reduced pressure and the dimeric products were 

distilled (Kugelrohr, pot 225-275°C, 0.001 mm Hg) affording 4.0 g of 

a viscous fluorescent liquid. A 25% solution in hexanes-ethyl acetate 

was prepared from which precipitated crystals of 39 and 40. The mother 

liquor was chromâtographed on silica gel (elution with 10% ethyl acetate 

in hexanes) to isolate the rest of 39 and 40. A benzene solution of 39 

and 40 was swirled with alumina to remove a fluorescent contaminant. 

The isomers were separated by fractional crystallization from hexanes-

ethyl acetate. The transoid isomer (39) was the first to crystallize 

in tiny round clusters which firmly held to the glass surface of the 

flask. The cisoid isomer (40) crystallized later in large fluffy 

clusters which were easily separated from those of 39. Repeated frac­

tional crystallizations of the separated isomers improved the purity to 

the desired degree. The purity of each isomer was determined by gc. 

For pyrolysis studies, the transoid diester (39) was prepared in >99.2% 

isomeric purity and the cisoid diester (40) was prepared in 92% isomeric 

purity. Analytical samples were prepared in >99% purity. Isomer 39: 

mp 177.5-178.5°C; IR (KBr) 1705, 1605, 1570, 1490, 1459, 1430, 1410, 

1295, 1265, 1200, 1165, 1115, 1078, 988, 931, 899, 850, 832, 787, 757, 

738, 722 cm"̂ ; NMR (300 MHz, benzene-dg)6 7.828 (d, J = 1.75 Hz, 2H), 

7.763 (d of d, = 1.75 Hz, = 7.83 Hz, 2H) , 6.652 (d, J = 7.83 Hz, 

2H) 3.433 (s, 6H), 2.714-2.600 (AA'BB' pattern, 8H) (Figures 2 and 3); 

MS (70 eV) 324 (100), 309 (23), 293 (84), 265 (86), 206 (25), 162 (19), 

131 (60); ̂ 20̂ 20̂ 4' calculated 324.13616, measured 324.13683 (Error: 
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+2.1 ppm). 

Isomer 40: mp 145-146°C, IR (KBr) 1722, 1708, 1607, 1571, 1435, 

1412, 1379, 1360, 1209, 1194, 1169, 1127, 1095, 1090, 982, 925, 911, 

845, 786, 767, 743 cra"̂ ; NMR (300 MHz, benzene-dg)6 7.815-7.788 

(m, 4H), 6.693 (d, J = 8.36 Hz, 2H), 3.407 (s, 6H), 2.671 (s, 4H), 

2.638 (s, 4H) (Figures 4 and 5); MS (70 eV) 324 (73), 309 (16), 293 (48), 

265 (100), 206 (32), 162 (24), 131 (79); calculated 324.13616, 

measured 324.13716 (Error: +3.1 ppm). 

2,8-Dihydroxymethyl-5,6,11,12-tetrahydrodi-
benzo[a,e]cyclooctene (45) 

The transoid diester (39) (>99.2% isomeric purity) was reduced 

27 
according to the general procedure of Fieser and Fieser. It was dried 

in a vacuum desiccator, dissolved in dry THF (5 mL) (freshly distilled 

under Ng from LAH) and added to LAH (350 mg) in 10 mL THF. The mix­

ture was heated to reflux and stirred for 1 h under Ng. After 

cooling, the reaction was carefully quenched by adding dropwise with 

shaking 350 yL water, 350 yL NaOH (15%) and 1050 yL water. The solid 

was filtered and washed with ethyl acetate. The filtrate was washed with 

HCl (10%), NaHCÔ  (sat.) and NaCl (sat.), dried over MgSÔ , filtered 

and concentrated. Upon cooling, 142.2 mg of crystalline 45 precipitated 

(94.6%): mp 180.5-186°C; IR (KBr) 3350 (broad), 1492, 1447, 1415, 1355, 

1017, 820 cm"̂ ; ̂  NMR (90 MHz, DMSO-dg)ô 6.90 (s, 6H), 4.94 (br. s, 2H), 

4.32 (s, 4H), 3.02 (s, 8H); ̂ Ĉ-NMR (22.5 MHz, DMSO-dg)ô 139.82, 139.55, 

138.25, 129.31, 127.85, 124.11, 62.68, 34.56, 33.97; MS (70 eV) 268 (16), 

251 (31), 250 (100), 235 (74), 221 (74), 207 (91), 206 (52), 205 (32), 
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192 (36), 134 (30), 91 (73), 77 (33); Ĉ gHgQOg: calculated 268.14633, 

measured 268.14723 (error +3.4 ppm). 

2,8-Dimethy1-5,6,11,12-tetrahydrodi-
benzo[a,e]cyclooctene (37) 

The transoid diol (39) was reduced using the general procedure of 

28 
Small ̂  â l» A lithium-ammonia mixture was prepared under Ng by con­

densing NĤ  (5-6 mL) into a flask containing Li wire (0.8 cm long), 

which had been washed with hexanes, and stirring for 1 h while NĤ  re-

fluxed. After cooling the mixture to -78°C with a dry ice-isopropanol 

bath, 39 (135.4 mg) was added as a THF solution (5 mL). The resulting 

mixture was allowed to warm and was stirred for 1.5 h as NH3 refluxed. 

Very carefully, the reaction was quenched with NĤ Cl (s) until the deep 

blue color was discharged. The NĤ  was allowed to evaporate and the 

residue was partitioned between brine and ether. The organic layer was 

separated, dried over MgSÔ  and concentrated to about 1 mL. Upon cool­

ing, 101.4 mg of crystalline 37 precipitated (85%, 100% pure by gc): 

mp 141.5-144.5°; IR (KBr) 1492, 1445, 1430, 1325, 1296, 1083, 1027, 

938, 914, 887, 852, 808 cm"̂ ; NMR (90 MHz, CDClg)̂  6.85 (s, 6H), 

2.99 (s, 8H), 2.21 (s, 6H); NMR (22.5 MHz, CDClg)̂  140.76, 137.78, 

135.34, 130.58, 129.66, 126.68, 35.50, 35.07, 20.82; MS (70 eV) 236 (68), 

221 (100), 206 (24), 130 (18), 118 (33), 91 (15); Ĉ gHĝ : calculated 

236.15650, measured 236.15662 (error; +0.5 ppm). 
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2,9-Dlhydroxymethy1-5,6,11,12-tetrahydrodl-
benzo[a,e]cyclooctene (46) 

The clsold diester (40) (92% isomeric purity) (162.4 mg) was re­

duced by the same procedure as described for 39 using 325 mg LAH to 

give 122.6 mg of 46 (93%): mp 154-156°C; IR (KBr) 3310 (broad), 1496, 

1447, 1255, 1053, 1027, 818 cm"̂ ; NMR (60 MHz, CDCl̂ )̂  6.95 (s, 6H), 

4.51 (s, 4H), 3.06 (s, 8H); NMR (22.5 MHz, acetone-d̂ )6 140.91 (2C), 

139.72, 130.40, 128.99, 125.20, 64.42, 35.70, 35.38; MS (70 eV) 268 

(10), 266 (9), 251 (28), 250 (100), 237 (41), 236 (21), 235 (83), 

232 (37), 221 (49), 220 (26), 219 (25), 207 (78), 206 (20), 205 (23), 

134 (20), 133 (16), 71 (43), 57 (70), 55 (52); Ĉ gHgQOg: calculated 

268.14633, measured 268.14696 (error +2.4 ppm). 

2,9-Dimethyl-5,6,11,12-tetrahydrodibenzo-
[a,e]cyclooctene (38) 

The cisoid diol (40) (122.6 mg) was treated essentially the same 

way as the transoid diol (39), but some unreacted starting material 

remained after workup. Recrystallization from ethanol (absolute) gave 

52.2 mg of 38 (95% pure by gc). An additional 12.7 mg was provided by 

thin layer chromatography of the mother liquor (silica gel, hexanes 

elution) to yield 64.9 mg of 38 (60%): mp 130.5-134°C; IR (KBr) 1498, 

1450, 1433, 1328, 1295, 1083, 1030, 922, 884, 809; NMR (90 MHz, 

CDClg)̂  6.87-6.84 (m, 6H), 2.99 (s, 8H), 2.22 (s, 6H); NMR (22.5 

MHz, 00013)6 140.77 (s), 137.90 (s), 135.40 (s), 130.64 (d, = 

156 Hz), 35.46 (t, = 128 Hz), 35.13 (t, = 128 Hz), 20.88 (q, 

J „ = 126 Hz); MS (70 eV) 236 (79), 221 (100), 206 (37), 130 (18), 
Ln 
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118 (35), 91 (16); calculated 236.15650, measured 236.15655 

(error; +0.2 ppm). 

Determination of Yields in Hydrocarbon Pyrolysis 

The yields of products and recovered starting material in the 

pyrolyses of 9 and 14 were determined by gc by adding a weighed internal 

standard (biphenyl) to a solution of the pyrolyzate. The amount of each 

product (mg P) was then calculated from the weight of the internal 

standard (mg IS), the area of the peak of the internal standard (AIS) 

and the area of the product peak (AP) in the gc trace (equation 18): 

AP 
mg P = mg IS (•̂ jg) X res. f. 18. 

A response factor (res. f.) was included to correct for the difference in 

the response of the detector to the two compounds being compared. The 

49 
response factor determined by Trahanovsky and Swenson for benzocyclo-

butene (90 vs. biphenyl (0.99) on a weight-to-weight basis) was used for 

9 and for the [4+4] dimer (14) and its isomers. For this study, the 

response factor for anthracene (7) vs. biphenyl was determined. The 

response factors for other products were assumed to be 1.0 on a weight-

to-weight basis. 

Determination of the Response Factor for Anthracene (7) 

Anthracene (7) was purified by the method of Orchin̂  ̂by two co-

distillations with ethylene glycol and two recrystallizations from 

benzene. It was 100% pure by gc. Biphenyl was reagent grade and used 

without purification. It was 99% pure by gc with an unknown impurity 

which was very close to it in the gc. The weight of this impurity and 
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its area in the gc were included with those of biphenyl. Three solu­

tions of accurately weighed anthracene (-10 mg) and biphenyl (~8 mg) in 

benzene were prepared and analyzed by gc. The response factor was 

determined in each case and an average taken: res. f. for anthracene vs. 

biphenyl = 1.01 i 0.02. 

FVP of Benzocyclobutene (9) at 770°C 

Benzocyclobutene (9) (533 mg) was placed in the sample chamber 

and preheated under a nitrogen atmosphere. The u-tube was precooled 

by liquid nitrogen and the system was evacuated. Immediately, the 

pyrolyzate was seen exiting from the hot zone as a fog. After transfer 

was complete, the u-tube was transferred to a dry ice-isopropanol bath 

and the contents which deposited furthest from the oven were taken up 

in CSg and analyzed by NMR and gc. These indicated the presence of 

ethylene by a singlet in the ITMR at 35.29 (lit.̂  ̂NMR 65.28) and a 

peak in the gc trace with the same retention time as an authentic sample. 

Other absorptions in the NMR were aromatic resonances, a singlet for 

20 
-CHg-CHg- of 9, a singlet at 62.28 assigned to ̂ -xylene (lit. NMR 

62.28) and 3 minor singlets at 62.17, 1.01 and 1.00. The NMR sample 

was mixed with the rest of the u-tube contents, dissolved in acetone 

with biphenyl (17.1 mg) and analyzed by gc. The product that condensed 

between the oven and the u-tube was dissolved In THF and analyzed by gc 

with biphenyl added (44.3 mg). Anthracene and 14 were identified by gc 

retention times. Yields of products are listed in Table 1. The mass of 

the product mixture by gc was 73% of the mass of starting material. 
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FVP of 5,6,ll,12-Tetrahydrodibenzo[a,e]cyclooctene (14) 

For the FVP of 14 (41.9 mg) at 920°C, transfer took about 2 h. 

"~5 ""5 
The vacuum measured was 7x10 torr during pyrolysis and 1.5x10 torr 

afterwards. After 2 h, a residue remained in the sample chamber, even 

after heating to 136° for several hours. The pyrolyzate was taken up 

in benzene, added to biphenyl and analyzed by gc. Compound 14 was 

identified in the product mixture by gc peak enhancement. The solu­

tion was then analyzed by gc/ms. After evaporation of the solvent, 

analysis of the residue by NMR revealed the characteristic downfield 

signal of the 9- and 10-protons of anthracene: 6 8.36 (s) (CDCl̂ ) 

22 
[lit. NMR (CCl̂ )ô 8.36]. Mass recovery was 95% by.gc. 

Compound 14 was pyrolyzed at four other temperatures and the 

pyrolyzates analyzed by gc. The sample chamber was not heated in any 

of these reactions. The data are tabulated in Table 5. Yields are 

listed in Table 1. 

Table 5. Data for the pyrolyses of 5,6 ,11,12-tetrahydrodibenzo[a ,e]-
cyclooctene (14) 
Vacuum Time Weight Weight Method of Mass 

ven 
during for of of bi­ anthracene recov­

temp., 
°C FVP, transfer. 14, phenyl. identifi­ ery, % 

torr h mg mg cation̂  by gcb 
720 1.6x10-6 5 21.9 37.0 a 90 
805 5.5x10-6 4 23.8 15.0 a 77 
920 7.0x10-5 2 41.9 23.6 a,b,c 95 
980 1.0x10-6 2.5 22.3 17.3 a,d 53 
1030 3.5x10-6 3.5 22.0 30.9 a,b 43 

Ânthracene (7) was identified in the product mixture four different 
ways. Method a: by its retention time in the gc; Method b: by its NMR 
signal at 6 8.36; Method c: by its molecular weight by gc/ms; Method d: 
the peak assigned to 7 in the gc of the product mixture was enhanced by 
addition of authentic 7. 

'̂ The mass of the product mixture determined by gc divided by the 
mass of the starting material. 
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FVP of 1,2-Naphthocyclobutene (31) 

Compound 31 (158 mg) was pyrolyzed at 890° with a measured vacuum 

of 2x10 ̂  torr. The sample was heated to 60°, causing it to transfer 

in about 0.5 h. The crystalline material that deposited just outside 

the oven was analyzed by gc, gc/ms, and ̂  NMR. Gas chromatography 

showed this to be two compounds (A and B) in the ratio of 55:45. Gc/ms 

analysis showed these were isomers of molecular weight 278 g/mole. Com­

pound A; MS (70 eV) 278 (100), 139 (82), 125 (21), 113 (9) ; Compound 

B: MS (70 eV) 278 (100), 139 (86), 125 (20), 113 (11). This and the 

NMR data indicated a mixture of dibenzanthracenes: NMR (90 MHz, 

CDCl̂ )ô 10.01 (s, IH), 9.08 (s, 2H), 8.91 (d, J = 12.2 Hz, 2H), 

8.83 (d, J = 12.4 Hz, 2H), 8.29 (s, IH), 7.95-7.45 (m, 20H) [dlbenz[a,h]-

anthracene, lit.̂ '̂̂  ̂NMR 6 9.08 (2H), 8.81 (2H), 7.88-7.55 (lOH)] 

OO 
[dibenz[a,j]anthracene, lit. NMR 6 9.98 (IH), 8.96 (2H), 8.29 (IH), 

7.80-7.56 (lOH)]. 

FVP of 1,2,7,8- and l,2,9,10-Dibenzo-5,6,ll,12-tetrahydro-
dibenzo[a,e]cyclooctene (35 and 36) 

The mixture of isomers (33.8 mg) was pyrolyzed at 800°C in 2 h. 

-5 
The sample was heated to 112-140°C. The measured vacuum was 1.0x10 

torr during pyrolysis. A white crystalline solid deposited just out­

side the oven which was taken up in acetone for gc analysis. Comparison 

of retention times to the pyrolyzate of 1,2-naphthocyclobutene (31) 

indicated a very pure mixture of dibenzanthracenes (33 and 34). 

Evaporation of the solvent afforded 6.3 mg (21%): Ĥ NMR (90 MHz, 

CDCl3)6 10.01 (s, IH), 9.08 (s, 2H), 8.91 (d, J = 12.2 Hz, 2H), 8.83 
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(d, J = 12.4 Hz, 2H), 8.29 (s, IH), 7.95-7.45 (m, 20H) was identical 

to that of the mixture obtained by FVP of 1,2-naphthocyclobutene (31). 

FVP of 2,8-Dlmethyl-5,6,ll,12-tetrahydrodibenzo[a,e]-
cyclooctene (37) 

Compound 37 (52.2 mg) (>99.2% isomeric purity by gc of the diester 

precursor (39)) was pyrolyzed in 3 h at 920°C. The sample chamber was 

warmed by insulation. The pyrolyzate was taken up in CHgClg for gc 

analysis. The solvent was evaporated and the residue (41.1 mg) was 

analyzed by NMR, then separated by TLC on activated alumina (hexane 

elution). The anthracene band was washed from the alumina with chloro­

form (15 mL) and analyzed by gc and NMR. Gc and NMR analysis before 

and after chromatography showed that the major pyrolyzate was in this 

1 13 
band. H and C NMR analysis showed that 2,7-dimethylanthracene (47) 

was the major pyrolyzate contaminated by 2,6-dlmethylanthracene (48) 

29 
(96:4 mole ratio) and another minor component with spectral character­

istics of an anthracene (Figures 8, 9, 10 and 11). Evaporation of the 

solvent afforded 9.8 mg of a crystalline solid. Compound 47 was re-

crystallized from benzene: mp 235-237°C (lit.̂ ® mp 24l°C); IR (KBr) 

1442 (m), 1363 (m), 1292 (m), 1257 (m), 1157 (m), 1100 (w), 1018 (m), 

943 (s), 922 (w), 896 (s), 874 (vs), 839 (m), 770 (vs), 750 (m) cm"̂  

[lit.31 IR 1463 (s), 1379 (m), 1310 (m), 1273 (m), 1197 (w), 1174 (m), 

1120 (w), 1040 (m), 1016 Cw), 962 (s), 941 (w), 916 (s), 896 (vs), 

861 (m), 791 (vs), 771 (m) cm"̂ ]; NMR (300 MHz, 00013)6 8.31 (s, IH), 

8.20 (s, IH), 7.88 (d, J = 9.7 Hz, 2H), 7.71 (s, 2H), 7.26 (d, J = 

OQ 
9.7 Hz, 2H), 2.53 (s, 6H) [lit.' NMR (100 MHz, CDClg)6 8.26 (s, IH), 
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8.14 (s, IH), 7.84 (d, J = 9.0 Hz, 2H), 7.68 (s, 2H), 7.24 (d of d, 

= 9.0 Hz, = 2.0 Hz, 2H), 2.50 (s, 6H)]; NMR (22.5 MHz, CDCl2)6 

134.79, 132.18, 129.91, 127.96, 127.80, 126.23, 125.68, 124.11, 21.94; 

MS (70 eV) 206 (100), 205 (38), 191 (39), 189 (33); calculated 

206.10955, measured 206.10975 (error: +1.0 ppm) (lit.̂  ̂MS 206, 205, 

191, 189, 102). 

FVP of 2,9-Dimethyl-5,6,ll,12-tetrahydrodi-
benzo[a,e]cyclooctene (38) 

Compound 38 (59.2 mg) (92% isomeric purity by gc of the diester 

precursor (40)) was pyrolyzed as the transoid isomer (37) affording, 

after workup, 11.9 mg of a solid which was mostly 2,6-dimethylanthracene 

1 13 
(48). This was analyzed by H and C NMR (Figures 10 and 11) and 

on 
recrystallized from benzene; mp 236-243°C (lit. mp 248°C); IR 1462 

(m), 1442 (m), 1365 (m), 1292 (m), 1260 (m), 1160 (m), 1128 (w), 1023 

(m), 999 (w), 949 (s), 929 (m), 888 (vs), 858 (s). 111 (s) cm"̂  [lit.̂  ̂

IR 1474 (m), 1460 (m), 1449 (sh), 1378 (m), 1305 (m), 1273 (m), 1171 

(m), 1139 (w), 1041 (m), 963 (s), 942 (m), 905 (vs), 873 (s), 793 (s) 

cm"̂ ]; ̂ H NMR (90 MHz, CDClg)̂  8.25 (s, 2H), 7.87 (d, J = 8.5 Hz, 2H), 

7.71 (br. s, 2H), 7.27 (d of d, = 8.5 Hz, Jg = 1.7 Hz, 2H), 2.53 

29 
(s, 6H) (lit. NMR as a 1:2 mixture with 47, the singlet for the 9-

and 10-protons is reported to be between those for the 9- and 10-protons 

of 47); ̂ Ĉ NMR (22.5 MHz)6 134.41, 131.59, 130.51, 128.12, 127.85, 

126.33, 124.93, 21.94; MS (70 eV) 206 (100), 205 (34), 191 (13); 

1̂6̂ 14' calculated 206.10955, measured 206.10917 (error; -1.8 ppm). 
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APPENDIX 

In part I of this thesis, an aryl analogue to the retroene reaction 

has been proposed for the first time to account for observed chemistry 

(Scheme 7, page 30). How this mechanism might apply to hydrocarbon 

pyrolysis has been addressed (pp. 35-38). This appendix shows how 

analogous heterocyclic chemistry reported in the literature might go by 

this mechanism. 

52 
A reaction which appeared in 1963 stands out because it is the 

only one found where the aromatic rings are labeled like those of the di-

methyldibenzocyclooctenes (37 and 38). As for 37 and 38, a ring flip ac­

companies formation of the central aromatic ring. It is the reduction of 

dinitrodiaryl sulfones, sulfoxides, sulfides, and ethers (68, X = SOg, SO, 

S, 0) in which 7-40% of the product mixture is a phenazine derivative (69) 

52 51 
(reaction 19). ' 

•r 
aq. dioxane 

Zn, NaOH 
+ 

68 

X = S02, SO, S, 0 
R = CI, CH^ 

69 

19. 

R 

+ 
R R 

i-
70 71 

Compound 69 is believed to arise by a Smiles rearrangement of a 

reduction product followed by displacement of X (Scheme 14). 
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Scheme 14: 

R' 

68 

NHOH 

6-

-R 

\ 
reduction 

NHOH 

Smiles Re- R' 
arrangement 
and 
displacement 

-H„0 

R 

Smiles Rearrange­
ment 

YH 

displacement 

OH 
I 

II II 

/ 
OH 

.oyy -
1+  ̂ R 

69 

Labeling of the aromatic rings (R = Cl,CHg) produces the same regio-

chemical results as the pyrolysis of dimethyldibenzocyclooctenes (37 and 

38, Scheme 3, p. 26). Even though this reaction probably does go by a 

Smiles rearrangement, especially when X = 0 or S, one can picture it as 

going by this new mechanism (Scheme 7, p. 30), especially for the 

sulfoxides and sulfones (X = SO or SO2) (Scheme 15). 
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Scheme 15: 

:NHOH 
-H -OH 

+ 
IHOH 

R R 

J-'°2 

OH 

H 

A closer analogy yet is seen in the FVP of thiosalicylic acid (72) 

which forms thioxanthone 73 in 32% yield presumably via the ketene 

54 74, The rationalization provided by the authors invokes a Diels-

Alder reaction between 74 (R=H) and benzyne (75), formed by loss of CSO 

from the closed form of 74 (76) (Scheme 16). The new mechanism provides 

a better explanation since it doesn't require two reactive species 

(Scheme 17). A labeling experiment, where a methyl group is attached to 

the aromatic ring (74, R=CĤ ), would easily distinguish between the two 

mechanisms since both possible spirodimers C77 and 78) would give only one 

thioxanthone (73) whereas a benzyne reaction would be expected to give 

two isomers. 
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Scheme 16: 

a ^̂ 2% 775' 
0.01 mm 

•SH -HgO 

72 

xx" 
74, R=H 

of -8=0=0 

76 

Scheme 17 : 

A' 
74, R = CH3 

or H 

+/or 

78 
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The cx-ketolactone 79, by decarbonylation, gives xanthone (80) pre­

sumably via the ketoketene (81).̂  ̂ This reaction also gives polymer 

and 3,4-benzocoumarin (82) (reaction 20). The formation of 80 can be 

oS-"  ̂
79 

explained by the new mechanism by analogy to formation of thioxanthone 

(73) but the appearance of 82 is somewhat puzzling. It could come from 

direct loss of CO2 from the head-to-tail [4+4] dimer of 81 (83) or from 

a spirodimer (84 or 85) by a series of 1,3-shifts and elimination of 

COg (Scheme 18). 

Compounds 80 and 82 were also formed along with dibenzofuran (90) 

in the pyrolysis of ketosulfite 91.̂  ̂ These can all be pictured as 

arising by this same mechanism (Scheme 19). 

Other reactions that appear to be simple displacements can be 

pictured as going by this mechanism. For example, biphenylene-2,2'-

carbonate (96) is thought to give 90 by a simple displacement in the 

first-formed diradical (Scheme 20),̂  ̂but one cannot help but wonder 

+ polymer 
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Scheme 19; 
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Scheme. 20: 

96 

N=ïO 

-CO2 

90 
80% yield 

if the retroene mechanism is operating (Scheme 21). Similarly, the 

Scheme 21: 

-CO, 

CO 
sulfite (97) gives 90 but only in 22% yield. The major product is 

5-hydroxydibenzofuran (98) (52%) (reaction 21). Again, the retroene 

21. 

22% 
98 
52% 
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fragmentation of a spiro-intermediate seems to be a viable alternative 

to direct displacement (Scheme 22). 

Scheme 22: 

-SO. 

I I 

90 
,-SOr 

97 

.S=5Qi 

-SO, 

—SO 

1,5-shift 
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PART II. AND NMR OF VINYLKETENE AND ITS DIMERIZATION BY [4+2] 

CYCLOADDITION. SYNTHESIS OF SIBIRINONE AND BICYCL0[4.2.1]-

NONA-3,7-DIEN-2-ONE 
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INTRODUCTION 

Because of their unusual chemistry and reactivity, ketenes (1) have 

held the interest of organic chemists since the pioneering work of 

Staudinger.̂  The chemistry of ketenes is unusual because the carbon-

=̂0 

r' 
1 

2 carbon double bond is very electrophilic. This results in a strong 

tendency towards [2+2] cycloaddition reactions (reaction 1) even when 

given the opportunity to react by the more common Diels-Alder reaction 

2 
(reaction 2). Tetrafluoroethylene (5) and aliéné (6) also display this 

3 
tendency. The [2+2] cycloaddition reaction has been widely studied and 

y==o  ̂ Q —' 
1. 

—X— 

R' 
3 

4; 
R' 

CF2=CF2 CH2=C=CH2  ̂

5 6 

and found to be consistently suprafacial with respect to the ketenophile, 

polarly directed, and stereoselective with respect to the R groups of the 
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ketene such that the largest Is directed toward the endo face of the 

adduct.̂ '̂ '̂ '̂  The selectivity approaches 100% when R=H and R'=Methyl 

or larger. 

Exceptions to this rule are rare. Certain ketenophiles elicit devi­

ant behavior as in reaction 3 where the carbonyl group of diphenylketene 

(7) reacts with the ketenophile (8).̂  The structure of the ketene can 

CH . •• A. CH„0 

also lead to exceptional chemistry, as will be seen later. 

Another result of the ketene's electrophilicity is their ability 

to add HX (10) to the carbon-carbon double bond where X=0R,NR2, halide, 

OgCR to give esters, amides, acid halides and anhydrides (11) (reaction 

4) .2  

=̂0 + H-X RR'HC-

R X 
1 10 11 

X=OR, NRg, halide, OgCR 

If a suitable ketenophile is not present, most ketenes dimerize by 

one of two ways. How the ketene dimerizes and the temperature at which 

It dimerizes are dependent on the substituents (R and R* in 1). For 
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example, diphenylketene (7) does not dimerize at all, even upon heating, 

while dimethylketene (12) dimerizes so readily it is only useful when 

generated in situ (reaction 5).̂  One mode of dimerization is seen in 

reaction 5 where a cyclobutadione (13) is formed. This is typical of 

0=<>=0 
H C. 

^=0 >- 0=3^ / f=0  5 .  

H3C /<[ 

12 13 

g 
ketenes where neither substituent is a hydrogen (R and R' ̂  H in 1). If 

one or both substituents are hydrogen (R and/or R' = H in 1), a g-

8 
lactone (14) is formed (reaction 6). 

=̂0 

R 
1 

R and/or R'=H 

One class of ketene which has appeared in the literature is vinyl-

ketenes (15). The first was methylvinylketene (16) from the pyrolysis 

of carvone (17) (reaction 7).̂  A double bond conjugated to the ketene 

0=° 

15 
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CH, 

CH. 

CH 
3 
17 

/ " j  

16 

+ CH, 

18 

provides some interesting alternatives to its chemistry. For example, 

the early work of Roberts and co-workers addressed the possibility of 

an electrocyclic ring closure which should be possible by analogy to 

9 
the facile [2+2] cycloaddition reaction. Ring opening of a cyclo-

butenone (19) to the vinylketene (20) was shown by trapping with 

ethanol (Scheme 1). Ring closure of 20 was shown by dehydration of the 

Scheme 1; 

CI, 

"CI 

19 

CHCl 

20 

EtOH Cî ^Et 

CHCl 

21 

corresponding acid (22) (reaction 8). 

lA^oh 

'''"̂ CHCl 

1) (Ac)20,A 

2) Evaporate 
solvent 

Cl. 0 

"CI 

22 19 
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While many thermal and photochemical ring openings of cyclo-

butenones (Scheme 1) are known,the ring closure is not 

a general reaction and not until 1963 was another example found (Scheme 

2).̂  ̂ The only other example, one in which the driving force is 

Scheme 2̂ : 

Cl2C=CCl-CCl=CCl-0Et — *- Cl2C=CCl-CCl=C=0 + CICĤ CĤ  

24 25 
23 

CI 

CI 

26 

aromatization, is the formation of benzocyclobutenone (27) in the 

pyrolysis of ô -toluyl chloride (28) (Scheme 3).̂  ̂

Scheme 

28 29 27 

Many vinylketenes are reported as reactive intermediates which 

generally undergo rearrangements to stable compounds by electrocycllc ring 

closures or hydrogen migrations.A prime example is the 

pyrolysis of cyclobutenone 30 in which both types of reaction are seen 

OC COCl 
CĤ  

620°C 

-HCl a 
CHo 
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as well as an unusual rearrangement to a cyclopentenone (31) (Scheme 

Scheme 4: 

The only report of a vinylketene dimerlzatlon appears in Payne's 

study of base-induced generation of vinylketenes from a,3-unsaturated 

26 
acid chlorides (37). In this study, a 3-lactone (38) was formed 
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which he concluded was formed to a large extent if not exclusively from 

isopropenylketene (39) rather than from isopropylideneketene (40) (Scheme 

5). This followed from the [2+2] cycloadduct (44) which was obtained by 

distillation as a 1:1 mixture with its conjugated isomer (45) when the 

decomposition was carried out in the presence of ethyl vinyl ether (46) 

(reaction 9). Compound 45 was shown to isomerize to 46 slowly at room 

temperature. 

Scheme 5 

0 .  +  

CHCOCl + Me 
3 

37 41 

40 

42 

path a 
acetone 

41 

path b 

38 

39 

43 
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H3C 

HgC 

 ̂lie ==s 0 + EtOCH=CH„ 

46 
39 

EtCl 

lUC 

CHg 

44 

EtO, 

CH, 

45 

One result of the many reports of vinylketenes as reactive inter­

mediates is the effort to synthesize relatively stable vinylketenes. 

One way in which stable vinylketenes have been formed is by coordina­

tion in a stable iron complex (47) (reaction 10) 
27 

The first of these 

28 
started from an n vinyl carbene iron complex (49) (reaction 11) 

Fe„(CO)Q + 

48 

Et„0 

(CH 
Fe 0 

oc'̂  1 \o 
CO 

47 

10. 

Ĉ Me ôMe 

/T'  ̂
l l j  Fe(CO)̂  

49 

4-3? 

or 
CO 
(L) 

COgMe OMe 

11. 

20 
The first stable vinylketene reported (51) appears to derive its 

stability from the steric interference of the methyl groups towards 



www.manaraa.com

79 

dimerization. This is probably the same reason that rather drastic 

conditions were required for its formation (reaction 12). Other stable 

vinylketenes are the bis(trimethylsilyl)ketene (53) and its tricarbonyl-

chromium complex (54) (reaction 13) 
28 In a later synthesis, the 

COCl 

52 

NEt, 

160*C 
sealed 
tube 

62% 
51 

12.  

Sille, 

(COgCr OCH3 

O 

55 

Me^Si—=—SiMe^ 

56 

(n-Bu)^0 

50°C 

Me^Si OMe 

53 

+ 

SiMe^ 

0 = 

13. 

Me^Si OMe 

54 

Cr(C0)3 

trimethylsilyl group was used to stabilize a vinylketene (57) which 

could then effectively participate as a diene in a Diels-Alder reaction 

29 
(reaction 14). Only one other vinylketene Diels-Alder reaction is 

known. This was a special case where the ketene (60) reacted with the 

pyrazole precursor (61). Other diazo compounds did not react the same 

30 
way (Scheme 6). 
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Scheme 6: 

COMe COMe HNMe 

PhN=NPh 

NMe-

COMe 

Another result of the reports of vinylketenes as reactive inter­

mediates was the study of the parent compound (66). It was first 

CH2=CU-CH == 0 

66 

generated by the pyrolysis of spiro[2.3]hexane-4-one (67) (Scheme 7). 

The product, described as a red liquid stable up to -160°C, was 

31 
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Scheme 7: 

O ' ̂ 0 

7 0 0 ° C  .  ( 1 1 +  M 0 L  . . ^ O M e  

0 

69 66 68 

identified by mixing with methanol which gave methyl vinylacetate (68). 

Vinylketene (66) was also proposed as an intermediate in [2+2] cyclo­

addition reactions of cyclopentadiene (2) with the dehydrochlorination 

32 33 
product of crotonyl chloride (70) and but-3-enoyl chloride (71). ' 

The initial adduct (72) could only be obtained with difficulty since it 

isomerized in the basic medium (Scheme 8). Vinylketene (66) was also 

postulated as the product of pyrolysis of ethylidenemalonate (75) on the 

basis of trapping with aniline vapor (Scheme 9).^^ 

More recent studies of vinylketene focused on its spectral identifi­

cation. The first such study dealt with its mass spectral identifica-

35 
tion in the pyrolysis of l-ethoxybut-3-en-l-yne (77) (reaction 15). 

CH^-CH-C 3C-O-CH2CH3 "=^^^5.0+ CHj-CHj 

77 66 

In the same year, two papers appeared which identified vinylketene (66) 

36 
by microwave spectroscopy in one case and by microwave and infrared 
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Scheme 

-Cl 

0 

or 

. CI 

0 

71 

NEto + 
HNEt^Cl" + 

^0 
66 

o 
erf • CnC.. -=̂  Crf° 

74 73 72 

Scheme 91 

U,CCH=< °X COj + (CHj)^™ + 

t "  

IPhNH^ 

-̂ 1 NHPh 

0 

76 
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spectroscopy in the second case. In both studies, the vinylketene 

(66) was formed by acid anhydride pyrolysis (78 in the first case, 79 

in the second) and was analyzed in the gas phase (Scheme 10). 

Scheme 10: 

0 0 

78 

0 0 

79 

Since Payne's study, there was the question of whether 1,4-elimina-

tion or 1,2-elimination of HX took place in compounds such as crotonyl 

chloride (70) (X=C1) to give vinylketene (66) in the first case or 

ethylideneketene (82) in the latter. This question was answered by 

Bock and co-workers who studied thermal HX elimination from a,3-unsatu-
OO 

rated carboxylic acid derivatives (HgC-CR=CH-COX with R=H,CH2). The 

temperature dependent changes of amounts of products in the heated flow 

system were analyzed by photoelectron spectroscopy. Based on MNDO 

calculations and literature data, the vinylketene structure (66) was 

assigned to the pyrolysis product (Scheme 11). The isomeric ethylidene­

ketene (82) was produced in the 760K short path pyrolysis of ethylidene 

+ HO 

66 80 

+ HO 

66 81 
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malonate (75) and rearranged on prolonged residence time in the hot zone 

into the thermodynamically more stable vinylketene (64) (Scheme 11). 

Scheme 11: 

HoC FVP H-X 

66 
70, X=C1 
81, X=OH 
83, X=C02CH=CHCHg 

CH .-̂ :x 
0 

FVP 
CO^+(CU^)^CO CH^-CH===0 

75 82 

To complete the spectral characterization of vinylketene, UV and 

NMR spectra are required. Because of a good body of data on ketene NMR 

chemical shifts, the NMR of vinylketene should provide a very clear and 

unambiguous identification of this reactive compound. Also, a better 

understanding of its reactivity and chemistry is desirable. This part 

of the thesis describes the low temperature and ^^NMR spectra of 

vinylketene (66) and some of its low-temperature thermal chemistry. 

Also described is some chemistry of the dimer of vinylketene and of the 

vinylketene-cyclopentadiene adduct (72). This work has been briefly 

39 
described in a published communication. 
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RESULTS 

Vinylketene (66) was prepared by the flash vacuum nyrolysis (FVP) 

of crotonic acid anhydride (83) (reaction 16). Methyl acetylene (84) 

0 <5^ +CH,Cê:C« + 16. 
0 0 550°c 0 3 II 

66 84 81 
83 

was also formed by a secondary reaction. The crotonic acid produced 

(81) was separated from the more volatile products by using an apparatus 

with two product condensers, the first cooled to -20°C and the second 

cooled to -196°C. Vinylketene (66) and methylacetylene (84) were identi-

1 n 
fied by H and C NMR by distilling a solvent into the -196°C condenser 

and allowing the mixture to warm to -78°C which produced a bright yellow 

solution. The ^H-NMR spectrum of this solution at -70°C showed by an 

internal standard a 22% yield of vinylketene (66) and a 40% yield of 

methylacetylene (84). Only 5% of minor products were present (Figure la). 

No evidence for the cyclic isomer of 66, cyclobutenone (85) was obtained. 

Ef' 
85 

The ^H-NMR spectrum clearly shows the structure of vinylketene (66) 

(Figure la). The ketenic hydrogen (H^) has about the same chemical 
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Figure 1. Proton NMR spectra (100 MHz) of (a) vinylketene (64) at 
-70°C, (b) 64 after 2 hours at -70°C, (c) -50°C, (d) -50°C 
30 min after spectrum c, (e) -30°C, (f) -30°C 20 min after 
spectrum e, (g) -30°C 30 min after spectrum e, (h) -10°C, 
(i) -10°C 20 min after spectrum h, (j) +10°C, (k) +10°C 
10 min after spectrum j 
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shift and coupling constant as those for the corresponding hydrogens 

22 
of cis- and trans-(l-propenyl)ketene (86 and 87) (Table 1). The 

rest of the spectrum fits the vinyl group perfectly. The terminal 

H, H 
d a 

66 

Table 1. Chemical shifts (6) and coupling constants (J) for ketenic 
hydrogens (H^)^ 

Compound Temperature, °C 6 for Hg, ppm "^ab' 

64 -70 4.02 11 

86 -80 3.93 10 

87 -80 4.05 10 

^ata for 86 and 87 are from reference 22. 

protons (H^ and H^) show the geminal splitting and coupling to which 

is also coupled to H^. The coupling constants and are equal 

(11 Hz) so the pattern for H^ appears as a doublet of triplets. Not 

seen in Figure 1 are the strong absorptions of methylacetylene (84) at 

6 1.9. The ketene showed little polymerization after two hours at -70° 

(Figure la, b). However, upon warming, the disappearance of vinylketene 

(66) was observed coincident with the appearance of oligomeric signals 

(Figure Ic-lk). If the solution was warmed quickly, a much cleaner 
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spectrum of the dimer appeared (70% yield) (Figure 2). This effect was 

13 
also seen by C-NMR (Figure 3)• 

13 
Vinylketene was also characterized by C NMR at -70° as a mixture 

with methylacetylene (84) (Figure 4). The signals of methylacetylene 

appear at 80.4 (s), 68.4 (s) and 3.7 (q). The ketene group is evident 

in the absorptions at 200.2 (s) and 28.6 (d, 173 Hz) by comparison 

to literature values (Table 2). The peaks at 121.9 (d) and 109.1 (d of 

d) are due to the vinyl group. 

Table 2. Carbon-13 NMR data of ketenes (Rj^R2Cj^=C2=0) 

^1 R2 
6 for Ci, 
ppm 

6 for Cg, 
ppm 

JCH' 
Hz 

Reference 

H H 2.5 194.0 171.5 40 

CHg H 10.9 200.0 40 

CH-0 SiMe-
3 \__/ 3 SiMeg 18.0 183.1 28 

H 18.6 200.0 40 

CH2=CH SiMe^ 22.3 183.7 29 

CH3 26.9 206.1 40 

^6«5 CH3 33.8 205.6 40 

C6»5 C2H5 42.1 205.6 40 

C6»5 C6»5 47.0 201.3 40 

13 
The C-NMR spectrum of the dimer (Figure 3) ruled out the 3-lactone 

structure (88) and the 1,3-cyclobutadione structure (89) by the 
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5 
PPM,* 

Figure 2. Proton NMR spectrum (60 MHz) of 2,5,6-trihydro-6-
allylidenepyran-2-one (90): (a) normal, (b) spin-spin 
decoupled with irradiation at 6 = 3.2 
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Figure 3. Carbon-13 NMR spectra (22.5 MHz) of the products from warming vinylketene (66): 
(a) slow warm-up, (b) fast warm-up showing fairly clean formation of 2,5,6-trihydro-
6-allylidenepyran-2-one (90) 
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70°C of vinylketene (66) and methylacetylene (84) 
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CH2=CH-Hd^ 

88 

H 

89 H 

multiplicity of the aliphatic signal at 6 28.6 in the gated-decoupled 

spectrum - a triplet. Also, as seen in a double irradiation NMR 

experiment (Figure 2b), the protons on this carbon (6 3.25, H^) are 

coupled with olefinic protons of a double bond conjugated to the carbonyl 

group since the signals at 6 6.9 (doublet of triplets, H^) and 6 6.0 

(doublet of triplets, H^) collapse to doublets when the methylene pro­

tons are irradiated. The lactone structure is evident in the IR (C=0 

stretch, 1760 cm C(0)0-C stretch 1240, 1125 cm and NMR 

(6 176.1 (s), 160.7 (s), not obvious in Figure 3b) spectra of the dimer 

and the vinyl group is apparent in the (Figure 2) and gated-decoupled 

13 
C NMR (not shown). Thus, the structure of the major vinylketene dimer 

is the S-lactone (90) (reaction 17). A minor component is formed even 

0 0 

17. 

66 66 90 
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in the fast warm-up mixture as indicated by a small aliphatic signal 

at (5 38. 9 in Figure 3b. The chemical shift suggests it is either 88 

or 89. 

Attempts to purify the dimer (90) by either chromatography or 

distillation caused isomerization and decomposition so 90 was isomerized 

to a mixture of a-pyrones (91 and 92) without purification. Acid-

catalyzed isomerization resulted in a 9:1 mixture of 91 and 92 (50% 

yield). When isomerization was effected by base, a 1:3 mixture was ob­

tained (50-60%) (Scheme 12). Formation of these pyrones serves as addi­

tional proof of the dimer's structure. 

Sclieme 12: 

a) 

H-CH=CH or 
'2 b) NaHCO, 

90 91 92 

a) 9 : 1 

b) 1 : 3 

Compound 91 is sibirinone, a recently discovered metabolite of 

41 
Hypomyces semitranslucens G. Arnold. Its spectral data were consistent 

with the structure and agreed with the literature data. Most notable is 

a strong ring breathing band in the infrared spectrum at 1540 cm 

Also indicative of the pyrone ring are lactone carbons (C(O)-O-C) in 

the ^^C NMR and a doublet of doublets at 6 7.47 in the NMR for the 
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hydrogen g to the carbonyl (Figure 5). Figure 5 also shows the methyl 

group as a doublet at 6 1.9 coupled to the olefinic hydrogen at 6 6.71 

which appears as a doublet of quartets since it is coupled to the other 

olefinic hydrogen of the side chain. Close inspection of the overlap­

ping patterns of the other 3 protons between 6 6.14 and 5.99 allows one 

to discern the 3 doublets there by their long-range coupling patterns 

and their coupling constants. 

Compound 92 is a new pyrone and was identified by its spectral data. 

It had all the characteristics of a pyrone mentioned above for sibirinone 

(91) in addition to NMR signals for the allyl side chain. The methylene 

protons appear as a doublet in the NMR (Figure 6) and are coupled to 

the only aliphatic carbon giving rise to a triplet in the gated-decoupled 

13 
C NMR. The rest of the allyl group is apparent in the vinyl pattern 

in the NMR (Figure 6) and an olefinic triplet in the gated-decoupled 

When cyclopentadiene (2) was distilled into the -196°C condenser con­

taining vinylketene and the mixture was allowed to warm up, a bright 

yellow solution was obtained which lost its color before reaching room 

temperature. The result was adduct 72 obtained in 23% yield from the 

anhydride (reaction 18). The structure of 72, the expected structure 

13, 
C NMR. 

18. 

2 
66 

72 
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Figure 5. Proton NMR spectrum (400 MHz) of sibirlnpne (.91) 
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Figure 6. Proton NÎIR spectrum (100 MHz) of 6 allyl-a-pyrone (92) 
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2 22 22 
based on previous studies of ketene cycloadditions, ' ' ' was in­

dicated by its spectral properties wliich agree wl tii the literature 

33 data. The cyclobutanone ring of 72 was indicated by the carbonyl 

stretching band at 1780 cm ^ in the IR and the vinyl group was obvious 

1 13 
from the H-NMR (Figure 7). No other Isomer was detected in the C 

NMR spectrum (Figure 8). In this spectrum, only 8 peaks are observed 

(theoretical number is 9) since 2 carbons have the same chemical shift. 

33 
The same result is obtained at 64 MHz. Attempts to react vinylketene 

with other substrates (acetyl chloride (93), butadiene (94), cyclo-

hexadiene (95), methylacrylate (96)) resulted in dimerization of the 

ketene (reaction 27). 

Compound 72 was isomerized to bicyclo[4.2.1]nona-3,7-dlen-2-one 

(97) in refluxing chlorobenzene (40% yield) (reaction 19). The 

0 

97 97 

structure of 97 followed from its spectral properties. The UV and IR 

spectra showed a carbonyl group which was now conjugated to a double 

13 
bond. The gated-decoupled C NMR indicated no methyl group. Only two 

possible structures that are isomers of 72 will accommodate these data: 

97 and the product of a 1,3-sigmatropic shift (98). Of these, only 97 

13 
fits the C-NMR data. This spectrum contains two aliphatic doublets 

PhCl 
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Figure 7. Proton liMR spectrum (60 MHz) of endo-7-vinylbicyclo 
[3.2.0]hept-2-en-6-one (72) 
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Figure 8. Carbon-13 Î^MR spectrum (22.5 MHz) of endo-7-vinylbicyclo[3.2.0]hept-2-en-6-one (72) 
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97 98 

(the bridgehead carbons) and two aliphatic triplets at 6 39 and 32 ppm. 

Of the triplets, the one at 6 32 is assigned to C-5 by comparison to 

steroid 99.^^ Of course, C-5 of 98 would also be expected to have this 

chemical shift. The triplet at 6 39 is too far downfield to be C-9 of 

98 which should have a chemical shift similar to C-4 of 72 (6 34 ppm). 

On the other hand, 39 ppm is about right for C-9 of 97 by comparison 

to chemical shifts for bridging carbons of norbomene (100, 6 49) and 

42 1 
norbornane (101, 6 39). The H-NMR spectrum was complex but fit the 

structure well (Figure 9). 

49 39 

100 101 

99 
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Figure 9. Proton NMR spectrum (100 MHz) of bicyclo[4.2.1]nona-3,7-dien-2-one (97) 
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DISCUSSION 

Metliylacetylene (84) is a well-known by-product in pyrolytic forma­

tions of vinylketene.It is believed to arise by loss of CO from 

vinylketene followed by hydrogen migration in the resulting carbene 

(Scheme 13).^^'^^ 

Scheme 13 ; 

H^C-C = C-H 

84 

Obtaining spectra of vinylketene in solution at low temperature is 

quite satisfying because it puts us on firm ground when discussing its 

chemistry. For instance, we know for a fact that the compound obtained 

upon warming the solution (90) is truly the dimer of vinylketene (reac­

tion 27) and that the adduct (72) obtained with cyclopentadiene (2) is 

formed from vinylketene (reaction 28). 

The 6-lactone structure of the dimer (90) was totally unexpected. 

This is the first time a ketene dimerization went by a Diels-Alder 

reaction. The carbonyl group of ketenes has been shown to react as 

dienophiles with certain dienes (reaction 3)^ and some vinylketenes 

29 30 
have reacted as dienes (reaction 24 and Scheme 6 ). The only other 

vinylketene dimerization reported gave a g-lactone (Scheme 5). 

The isomer ratios in the isomerization of the dimer to pyrones 
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(Scheme 12) can be rationalized by the mechanisms shown in Scheme 14. 

Acid-catalyzed isomerization would yield a neutral intermediate (102) 

which would give the protonated isomers (91-H  ̂ and 92-H^) in a slow, 

reversible reaction. These would in turn deprotonate in a fast but 

reversible reaction. Thus, the themodynamically more favorable isomer 

(91) is formed to a greater extent. On the other hand, base-catalyzed 

isomerization gives an anionic intermediate (104) in a reversible reac­

tion which gives the isomeric pyrones in a fast neutralization. This 

should be an irreversible reaction since protons on 91 and 92 are not 

especially acidic. Thus, a kinetically-controlled product ratio results. 

Since there is some freedom of rotation in the sigma bond to the termi­

nal vinyl group'of 104, and since there would be some coordination to 

the oxygen in the ring, path a is the favorite path of neutralization 

resulting in a larger amount of 92. 

The formation of these pyrones is interesting because it complements 

the method of Rey et for the preparation of pyrones by the action 

45 
of tertiary amines on a,B-unsaturated acid chlorides (reaction 20). 

Their efforts to obtain the parent system (91 and 92) failed. 

105 106 38 

The failure of vinylketene (66) to react with butadiene (94)or 

cyclohexadiene (95) was not too surprising, since these are not nearly as 
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Scheme 14: 
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46 
reactive as cyclopentadiene (2). The experiments with methyl acrylate 

96 and acetyl chloride 93 were attempts to find a carbonyl compound 

that would react with the diene portion of the ketene (66) in the same 

manner that 66 itself does in dimerization (reaction 27) in hopes that 

a new general synthesis of pyrones would be found. 

The [2+2] cycloaddition between a diene (2) and vinylketene (66) 

(reaction 28) followed by a Cope rearrangement to form the bicyclo-

[4.2.1]dienone (97) (reaction 29) represents a new synthetic strategy. 

Huston, Rey and Dreiding recently employed this strategy towards the 

synthesis of derivatives of 97 (107) (Scheme 15).^^ They generated 

substituted vinylketenes in situ from a,3-unsaturated acid chlorides 

(108) and base and trapped them with cyclopentadiene (2). The 

a-position of 108 had to be a group other than hydrogen to prevent conju­

gation of the double bond in the basic medium. So, like the pyrone 

synthesis, the parent system (97) was inaccessible by their method. 

Both stereoisomeric adducts (109 and 110) were converted to the target 

molecule (107) although the exo-vinyl isomer (110) reacted slower than 

the endo-vinyl isomer (109). Danheiser and co-workers recently developed 

this approach for the synthesis of cycloctadienones (111) from cyclo-

butenones (112) or a,3-unsaturated acid chlorides (113) (Scheme 16).^^ 

They were able to control the conditions for the preparation of 72 

and the exo-vinyl isomer (110, R=H) and prepared 97 in 18% overall 

yield from crotonyl chloride (70). 

One reason why the yield of 97 in reaction 29 is not very good (40%) 

is suggested in the isolation of a-pyrone 92 from the product mixture 
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Scheme 15: 
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and by seeing cyclopentadiene (2) in the gc trace of the product mix­

ture. These products suggest there is competition between the Cope 

rearrangement and a retro-[2+2]cycloaddition which gives vinylketene 

(66) and 2. A possible solution to this problem is ketalization of 

the cyclobutanone (72) prior to heating (Scheme 17). 
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EXPERIMENTAL 

General 

The basic flash vacuum pyrolysis (FVP) apparatus was described in 

part I of this thesis (pp. 39a-39b). It was patterned after the one 

48 
described by Trahanovsky et al. In addition to the basic unit, a 

second condenser was placed between the oven and the -196°C condenser. 

This condenser was cooled to -20°C by pumping through it isopropanol 

which had passed through a dry ice/isopropanol bath. A peristaltic pump 

was used to pump the isopropanol. 

Infrared spectra were recorded on either a Beckman Model 4250, a 

Model 19A, or an Acculab II spectrophotometer. Proton NMR spectra were 

obtained on either a Varian A60, an EM360, a Hitachi R-20B, a JEOL 

FX-90Q, a Varian HA-100 or a Bruker NH-400. Carbon-13 NMR spectra were 

recorded on either the JEOL FX-90Q or a Bruker HX-90 with a Nicolet 1089 

computer. Chemical shifts are reported in 6 units down field from TMS 

(6 0.00). Gas chromatography/mass spectrometry analysis was performed 

on a Finnigan Model 4023 gc/ms data system. Exact mass was determined 

on an AEI MS-902 high-resolution spectrometer. The ultraviolet spectrum 

was obtained with a Gary 14 UV-Vis spectrophotometer. The melting point 

was determined using a Thomas-Hoover capillary melting-point apparatus. 

Gas chromatography (gc) was performed on a Varian Aerograph series 1700 

gc equipped with a thermal conductivity detector. Commercially avail­

able chemicals used and their sources are listed in Table 3. 
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Table 3. Commercially available compounds 

Compound Source 

Acetic anhydride Fisher Scientific Co. 
Acetyl chloride Fisher 
Acetone-dg Norell, Inc. 
Benzene Fisher 
Butadiene Matheson Division of Searle Medical 

Products USA, Inc. 
Calcium chloride J. T. Baker Chemical Co. 
Carbon dioxide(s) Heller Carbonic 
Carbon disulfide Fisher 
Carbon tetrachloride Fisher 
Chlorobenzene Fisher 
Chloroform-d Aldrich Chemical Co. 
Crotonic acid Aldrich 
Cyclohexadiene Columbia Organic Chemicals 
Dibromoethane J. T. Baker 
Dicyclopentadiene The Matheson Co., Inc. 
Diethyl ether Fisher 
Hexanes Fisher 
Isopropanol Fisher 
Magnesium sulfate J. T. Baker 
Methylacrylate Aldrich 
Nitrogen (g) Quickway, Inc. 
Nitrogen (1) Air Products and Chemicals, Inc. 
Silica gel E. Merck, Darmstadt, Germany 
Sodium bicarbonate J. T. Baker 
Sodium chloride J. T. Baker 
Tetramethylsilane (TMS) Norell, Inc. 
2-Toluenesulfonic acid J. T. Baker 

Cyclopentadiene (2) 

This was prepared from dicyclopentadiene using an adaptation of 

the method of Mardanov et al.^̂  The dimer was heated to 160-170°C 

with stirring and the monomer thus formed was distilled through a 6" 

fractionating column into an ice-cooled receiver: NMR (60 MHz, 

CCI4) 6 5.6 (m, 4 H), 2.3 (m, 2 H). 
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Crotonic Anhydride (83) 

This compound was prepared following the procedure described by 

Clover and Richmond.In a 1-L flask equipped with a reflux condenser 

and a drying tube filled with CaClg, crotonic acid (85 g, 0.99 mole) 

and acetic anhydride (300 g, 2.9 mole) were heated to a vigorous reflux 

for 24 h. Acetic acid and excess anhydride were removed by distilla­

tion under reduced pressure and the residue was fractionally distilled 

(1' column packed with glass helices) to afford 59 g of 83 (99.9% pure 

by gc; 10% ov-1 on chromosorb w, 7.5' x 1/8"): bp 85-90°C (6 mm Hg) 

[lit.bp 128-130° (19 mm Hg)]; IR (neat) 1790, 1725, 1655, 1085, 965 

cm'l; NMR (60 MHz, CC1̂ )6 7.05 (d of q, Jj=15 Hz, Jq=7.0 Hz, 2 H), 

5.8 (d of q, Jj=15 Hz, Jq=2.1 Hz, 2 H), 1.9 (d of d, Ĵ =2.1 Hz, Ĵ =7.0 

Hz, 6 H). 

Vinylketene (66) 

Solutions of this compound were prepared by pyrolyzing crotonic 

anhydride (83) at 530°C and 0.01-0.1 torr at a rate of about 1 g per h. 

The solvent was distilled into the -196*C condenser before, during and 

after pyrolysis. Best results were obtained when the level of NgC#) 

was raised while solvent was introduced, then lowered so that the ketene 

was deposited on a layer of solid solvent. At the end of the pyrolysis, 

solvent was distilled in fast enough that it ran dovm into the ketene 

before freezing. In this way, when the frozen solution was later melted, 

no ketene was left on the walls of the condenser to polymerize. The 

amount of 83 pyrolyzed and the amount and type of solvent used depended 
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on the experiment to be performed. For NMR experiments, 100 rag of 83 

was pyrolyzed and 5 mL of solvent was used. For NMR on the HA 100 

spectrometer, CS^ was used and after the solution had been warmed to 

-78°C in a dry ice/isopropanol bath, an internal standard (BrCHgCHgBr) 

for the yield determination was added. Then part of the solution was 

13 
transferred via pipette to an NMR tube and TMS was added. The C-NMR 

experiment required CDCl^ for an internal deuterium lock so a 1:1 mix­

ture of CDClg and CS^ was used so that at -78°C a liquid solution was 

obtained. The NMR spectra showed 66 (22% yield) and methylacetylene 

(84) (40% yield). Compound 66; NMR (100 MHz, CS2)6 5.95 (H^, d of 

d of d, J ̂  = 11 Hz, J = 11 Hz, = 18 Hz, 1 H), 4.86 (H . d of d, 
ab be bd d 

J, , = 18 Hz, J J = 1.5 Hz, 1 H), 4.55 (H , d of d, J, = 11 Hz, J , = 
bd cd c be cd 

1.5 Hz, 1 H), 4.02 (Ĥ , d, = 11 Hz, 1 H); ̂ Ĉ NMR (22.5 MHz, CDCl̂ / 

CS.)̂  200.2 (s), 121.9 (d, = 155 Hz), 109.1 (d of d, = 154, 

162 Hz), 28.6 (d, = 173 Hz). Compound 84: ^H NMR (100 MHz, CSg)^ 

1.89 (s, 1 H), 1.88 (s, 3 H) [lit.̂  ̂NMR (60 MHz)6 1.9 (s)]; ̂ Ĉ NMR 

(22.5 MHz, CDCl3/CS2)6 80.4 (s), 68.3 (d, = 248 Hz), 3.7 (q, = 

132 Hz). 

2,5,6-Trihydro-6-allylidenepyran-2-one (90) 

Vinylketene (66) was prepared from crotonie anhydride (83) (3.5 g, 

23 mmole). Before, during and after pyrolysis, CDCl̂  and CSg (1:1, 20 

mL) was distilled into the -196°C condenser. After pyrolysis, the con­

tents of the -196°C condenser were warmed quickly to -78°C under Ng, 

then shaken occasionally until the mixture was homogeneous. It was 
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removed from the dry ice/isopropanol bath and allowed to warm to room 

temperature which discharged the bright yellow color. The solution 

13 
was analyzed by infrared and C-NMR spectroscopy, then an internal 

standard was added (BrCHgCHgBr) and a ^H-NMR spectrum was obtained which 

showed a clean formation of 90 (22% yield from 83): IR (neat) 1760, 

1680, 1240, 1125 cm~̂ ; NMR (100 MHz, CDClg/CSg)̂  6.81 (d of t, = 

9.8 Hz, = 4.2 Hz, 1 H), 6.70 (d of d of d, = 17.5 Hz, Jg = Jg = 

10.7 Hz, 1 H), 5.95 (d of t, = 9.8 Hz, = 2.4 Hz, 1 H), 5.40-4.90 

(m, 3 H), 3.20 (m, 2 H); NMR (22.5 MHz, CDClg/CSg)̂  176.1 (s), 

160.7 (s), 145.0 (d, J „ = 170 Hz), 128.7 (d, = 156 Hz), 119.3 
Un Uii 

(d, = 175 Hz), 116.5 (t, = 160 H^), 112.3 (d, = 156 Hz), 

28.6 (t, Jgy = 132 Hz). 

Sibirinone (91) 

The crude dimer (90) (0.68 g) was dissolved in benzene (3 mL) and 

added to a solution of p-toluenesulfonic acid (21 mg) in benzene/ether 

(2:1, 1 mL). The resulting solution was stirred at 58°C for 20 h. The 

solution was diluted with ether and washed with NaHCÔ  (sat.) and brine. 

The aqueous washings were extracted with ether and the ether solutions 

were combined and dried over MgSÔ . Distillation of the solvent afforded 

a yellow oil which by ^H NMR was a mixture of 91 and the allylpyrone 

(92) (9:1 mole ratio). The yield of 91 was 45% by NMR integration vs. 

an internal standard (BrCHgCHgBr). Crystallization from ether - hexanes 

afforded pure 91: mp 55.0-55.3°C (lit. mp 58-59°C), IR (mull) 1735, 

1660, 1540, 1095, 820, 790 cm"^ (lit.̂  ̂IR 1740, 1715, 1653, 1605, 1550 
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cm ̂ ); NMR (300 MHz, acetone-dg)6 7.25 (d of d, = 9.5 Hz, J2 = 

6.5 Hz, 1 H), 6.71 (d of q, J, = 15 Hz, J 7.0 Hz, 1 H), 6.14 (d, 
q 

J = 9.5 Hz, 1 H), 6.03 (d, J = 6.5 Hz, 1 H), 5.99 (d of q, = 15 Hz, 

Jq = 1.2 Hz, 1 H), 1.92 (d of d, = 7.0 Hz, = 1.2 Hz, 3 H) [lit.^^ 

% NMR 6 7.28 (d of d, = 9.5 Hz, = 6.5 Hz, 1 H), 6.67 (d of q, 

Jj = 15 Hz, Jq = 7.0 Hz, 1 H), 6.12 (d, J = 9.5 Hz, 1 H), 6.03 (d of q, 

= 15 Hz, Jq.= 1.2 Hz, 1 H), 5.97 (d, J = 6.5 Hz, 1 H), 1.87 (d of d, 

= 7.0 Hz, Jg = 1.2 Hz, 3H)]; NMR (22.2 MHz, acetone-d^)6 161.4 

(s), 160.1 (s), 144.8 (d, = 163 Hz), 133.9 (d, = 157 Hz), 124.1 

(d, Jgy = 160 Hz), 114.1 (d, Jgg = 171 Hz), 103.7 (d, = 170 Hz), 18.3 

(q = 127 Hz); MS (70 eV) 136 (59), 108 (100), 95 (34), 79 (98), 

67 (23), 51 (16) [lit.41 MS 136 (50), 108 (95), 95 (40), 89 (100) 

6-Allyl-a-pyrone (92) 

The crude dimer (90) (0.5 g) was dissolved in ether (2 mL) and 

stirred with NaHCO^ (sat.) (2 mL) overnight. The layers were separated 

and the aqueous layer was washed with ether. The organic parts were 

combined, dried over MgSO^ and filtered. Removal of the solvent by 

distillation afforded a yellow oil. ^H NMR indicated a mixture of 92 

and 91 (3:1 mole ratio). The yield of 92 was 42% and that of 91 was 13% 

by integration vs. an internal standard (BrCHgCHgBr). The isomeric 

pyrônes were subjected to thin layer chromatography (silica gel, ether 

elution) which failed to separate them. An analytical sample of 92 

was obtained by gc prep (1/8" x 4', 3% OV-17, 115°C): IR (neat) 1745, 

1648, 1570, 1098, 809 cm"̂ ; ̂ H NMR (.400 MHz, CDCl̂ )ô 7.28 (d of d, = 

6 Hz, Jg = 9 Hz, 1 H), 6.17 (d, J = 9 Hz, 1 H), 5.99 (d, J = 6 Hz, 1 H), 

5.88 (d of d of t, J , = 10 Hz, = 16 Hz, = 8 Hz, 1 H), 5.23 
cis trans t 
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(gemlnal vinyl protons) (two overlapping d of d, = 16 Hz, J . 
L IT atl S CIS 

10 Hz, J =2 Hz, 2 H), 3.25 (d, J = 8 Hz, 2 H); NMR (22.5 MHz, 
gem 

00013)6 164.3 (s), 162.3 (a), 143.7 (d, = 162 Hz), 131.2 (d, = 

161 Hz), 119.2 (t, = 154 Hz), 113.3 (d, = 172 Hz), 102.8 (d, 

= 171 Hz), 38.0 (t, = 128 Hz); MS (70 eV) 136 (27), 108 (6), 

95 (100), 79 (5), 77 (5), 67 (4), 53 (5); CgHgOg, calculate 136.05243, 

measure 136.05206, error: 2.7 ppm. 

7-Vinylbicyclo[3.2.0]hept-2-en-6-one (72) 

Vinylketene (66) was prepared from crotonic anhydride (83) (4.0 g, 

26 mmole). Before, during and after pyrolysis, freshly prepared cyclo-

pentadiene (2) (10 mL) was distilled into the -196°C condenser. After 

pyrolysis was complete, the contents of this condenser was shaken and 

warmed to room temperature. The bright yellow color of the solution at 

low temperatures was discharged before it reached 0°C. After distilla­

tion of the excess 2, the residue was chromatographed on silica gel. 

Fractions containing 72 were combined and concentrated to afford 1.0 g. 

Vacuum distillation afforded 0.8 g of 72 which was isomerically pure by 

^H and NMR (23% yield based on anhydride): bp 44-45° (0.1 mm Hg); 

IR (neat) 1780, 1645, 1445, 1355, 1245, 1165, 1145, 1030, 990, 925, 

795, 710 cm"̂  [lit.^^ IR 1770, 1630, 1435, 1350, 1235, 1135, 980, 915, 

795, 710 cm"^]; NMR (60 MHz, CC1^)6 5.8 (m, 2 H), 5.6-4.9 (m, 3 H), 

4.1 (m, 1 H), 3.7 (m, 2 H), 2.5 (m, 2 H) [lit.^^ ̂ H NMR (250 MHz, cdci3) 

6 5.91-5.88 (m, 1 H), 5.80-5.75 (m, 1 H), 5.56 (d of d of d, J = 7.5, 

10.3, 17.3 Hz, 1 H) 5.22-5.12 (m, 2H), 4.13 (d of d of d, J = 1.1, 7.5, 
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8.3 Hz, 1 H) 3.89-3.81 (m, 1 H), 3.77-3.68 (m, 1 H), 2.69 (d of t, J = 

4.4, 17.0 Hz, 1 H), 2.44 (d of d of d of d, J = 2.0, 4.2, 9.0, 1.70 Hz, 

1 H)]; NMR (22.5 MHz, CDC1,)6 211.2 (s), 134.0 (d, J „ = 163.6 Hz), 
j Cn 

129.7 (d, = 159.6 Hz, 2 C) 118.1 (t, = 158.8 Hz), 67.6 (d, = 

127.9 Hz), 59.3 (d, = 141.9 Hz), 42.9 (d, = 150.7 Hz), 33.9 

(t, Jçy =132.3 Hz) [lit.33 NMR (62.8 MHz, CDClg)^ 212.2, 134.5, 

129.9 (2 C), 118.6, 68.0, 59.6, 43.1, 34.2]; MS (70 eV) 134 (11), 106 

(18), 105 (17), 91 (40), 79 (34), 68 (99), 66 (100) [lit.MS 134 

(M̂ )]; CgH^gO, calculated 134.07317, measured 134.07366, error: 3.7 

ppm. 

Bicyclo[4.2.1]nona-3,7-dien-2-one (97) 

A 5% solution of the vinylcyclobutanone (72) was purged with 

nitrogen, then heated to reflux under for 2 h. After gc analysis, 

which showed the presence of cyclopentadiene, the solvent was distilled 

under reduced pressure and the residue was chromatographed on silica 

gel (5% ether in hexanes elution). The fractions containing 97 were 

combined and concentrated to afford 0.38 g. Distillation afforded 0.32 

g of 97 (40% yield): bp 65°C (0.5 mm Hg); IR (neat) 1675, 880 cm"̂ ; 

UV (EtOH) 277 nm (log e 4.22), 327 (2.32); ̂ H NMR (100 MHz, CCl̂ ) 

6 5.97-5.50 (m, 4 H), 3.37 (m, 1 H), 3.09 (m, 1 H), 2.90-2.50 (m, 2 H), 

2.37-1.87 (m, 2H); NMR (22.5 MHz, 00013)6 205.3 (s), 139.9 (d, = 

153.7 Hz), 135.5 (d, = 164.0 Hz), 131.7 (d, = 168.4 Hz), 127.0 

(d, - 159.6 Hz), 57.5 (d, =135.3 Hz), 41.1 (d, = 133.1 Hz), 

38.8 (t, Jgg = 131.6 Hz), 32.4 (t, = 130.9 Hz); MS (70 eV) 134 (34), 
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106 (5), 105 (4), 91 (8), 79 (7), 68 (100), 66 (69), 40 (17), 39 (27); 

CgHiQÛ, calculated 134.07317, measured 134.07302, error: 1.1 ppm. 

Allylpyrone (92) was also isolated from the reaction mixture and was 

identified by IR and NMR. 

Attempted Reactions of Vinylketene with Potential Ketenophiles 

Vinylketene 66 was prepared in the usual way from 1.0 g of an­

hydride. In separate experiments, acetyl chloride (93) (10 mL), 

butadiene (94) as a 1:1 solution in CŜ  (10 mL), cyclohexadiene (95) 

(10 mL), and methyl acrylate 96 (10 mL) were distilled into the -196°C 

condenser before, during, and after pyrolysis. In each case, the major 

product isolated after distillation of excess reagent and chromatography 

was dimeric material (90 and its isomers) characterized by TLC, NMR 

and IR: the mixture had the same characteristics when a solution of 

vinylketene in CS2 is treated the same way. 



www.manaraa.com

121 

REFERENCES 

1. Staudinger, H., "Die Ketene," Enke, Stuttgart, 1912. 

2. Holder, R. W. jJ. Chem. Educ. 1976, 5^, 81 and references cited 
therein. 

3. Roberts, J. D.; Shorts, C. M. "Organic Reactions," Vol. 12, R. 
Adams, editor, John Wiley and Sons, New York, 1962, Ch. 1. 

4. Houk, K. N. Acc. Chem. Res. 1975, 8^, 361. 

5. Houk, K. N.; Strozier, R. W.; Hall, J. A. Tetrahedron Lett. 1974, 
897. 

6. Sustmann, R.; Ansmann, A.; Vahrenholt, F. Chem. Soc. 1972, 
94, 8099. 

7. Martin, J. C.; Gott, P. G.; Goodlett, V. W.; Hasek, R. H. Org. 
Chem. 1965, 30, 4175. 

8. Chickos, J. S. ; Sherwood, D. E., Jr.; Jug, K. Ĵ . Org. Chem. 1978, 
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PART III. SYNTHESIS AND FLASH VACUUM PYROLYSIS 

OF 5,8-DIPHENYLTETRALIN 
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INTRODUCTION 

Recently, there has been considerable interest in the thermal 

chemistry of tetralin (1)^"^ because it is used as a hydrogen-donor 

solvent in coal liquifaction̂  ̂and as a model of one of the important 

structural features of coal.^^ In the flash vacuum pyrolysis (FVP) of 

1, the major products are benzocyclobutene (2), styrene (3), indene (4), 

1 3 
1,2-dihydronaphthalene (5), and naphthalene (6) (reaction 1). ' 

00 * 0  ̂* Oo 
700-900°C 

+ 1. 

CO * 00 

Compound 2 is formed by a retro-Diels-Alder reaction (reaction 2) and 

3 
Compound 5 is the result of 1,2-elimlnation of hydrogen (reaction 3). 

-CH^ oc 
H H 

00  ̂
—#2 
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Styrene (3) Is believed to arise primarily by isomerization of 2 

3 (reaction 4) while compounds 4 and 6 are believed to be secondary 

3 products of pyrolysis of 5 (reaction 5). 

CO CO • oo 

The ratios of these products in the pyrolysis of 1 are strongly 

3 dependent on the conditions of the pyrolysis. Generally, naphthalene 

(6) is the major product, especially at high conversions. It is believed 

that dehydrogenation that leads to 5 and 6 is catalyzed by collisions 

with the surfaces of the reactor and that the lowest energy homogeneous 

thermal reaction of tetralin (1) is the retro-Diels-Alder reaction that 

3 
leads to benzocyclobutene (2) (reaction 2). This follows from experi-

3 
ments in which the decomposition of tetralin is laser-induced. When 

tetralin is decomposed this way, both by direct multiphoton irradiation 

and by SiF̂ -sensitiziation, benzocyclobutene (2) and styrene (3) are the 
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major products (Table 1). Under these conditions, surface chemistry has 

been eliminated. Table 1 also shows how increasing the vacuum in FVP 

affects the outcome. At the lowest pressure, loss of ethylene becomes 

comparable to loss of hydrogen. This is probably the result of shorter 

residence time in the hot zone. 

Table 1. Product distribution for thermolysis of tetralin (1) 

Products, ver-

3 4 5 6 Other sion, 
„ ence 

1. Flow pyrolysis, latm No, 
750°Cb 2. 4 18. 3 17. 5 10. 7 45.8 4. 7 74. 8 3 

2. FVP, 0.1 torr, 737°Ĉ  6 10 5 55 10 13 6 1 
3. FVP, 0.1 torr, 888°cb 6 23 15 5 31 20 89 1 
4. FVP, 0.05 torr, 750°Ĉ  34. 7 9. 9 4. 1 31. 8 8.2 11. 3 3. 7 3 
5. Multiphoton excitation^ 54. 8 19. 7 5. 5 9. 0 Trace 11. 0 0. 8 3 
6. SiF^-sensitization, 

T.ax-1490'cd w
 

00
 

2 

0
 

C
M
 

1 9. 4 15. 5 5.6 11. 2 7. 7 3 

^Numbers are percent of total product found. 

Âll pyrolyses (entries 1-4) were carried out in quartz reactors. 

M̂ultiphoton excitation was accomplished with a pulsed CO2 TEA 
laser tuned to 945.99 cm~l, energy/pulse 0.8 J, 2790 pulses, 0.325 
torr 1. 

"̂ Compound 1 (0.325 torr) and SiF̂  (6 torr) were irradiated with an 
unfocused, pulsed CO2 TEA laser tuned to 1027.36 cm~̂ . Pure 1 does not 
decompose under unfocused conditions, energy/pulse ranged from 0.11 to 
0.27 J/pulse, 180 pulses. 

It was decided that the surface-catalysis hypothesis could be 

tested by introducing bulky, thermally-inert groups into the tetralin 

nucleus where they would not interfere with the retro-Diels-Alder reac­

tion (reaction 2) but would protect the molecule from collisions with 

Conditions 
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the surfaces that catalyze loss of hydrogen. Benzylic hydrogens, be­

ing the most thermally labile, need the most protection. In order 

that the protecting groups would not affect the retro-Diels-Alder 

reaction, they would have to be bound to the aromatic ring. Substitu­

tion in the aliphatic ring is known to infuence the thermal chemistry 

there.^ The phenyl group was chosen as being fairly bulky and the 

least likely to react pyrolytically. Thus, the molecule chosen for 

pyrolysis was 5,8-diphenyltetralin (9). If the loss of ethylene in the 

pyrolysis of 9 is comparable to that in the FVP of tetralin (1) but the 

loss of hydrogen is diminished, then the surface-catalysis hypothesis 

will be supported. 

9 

5,8-Diphenyltetralin has never been synthesized before, so the first 

task was to design a workable synthesis of 9. The second task was to 

pyrolyze 9 and 1 under identical conditions in order that the results 

could be compared. 
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RESULTS 

5,8-Diphenyltetralln (9) was prepared two different ways. The 

first method gave low yields but was useful as an independent synthesis 

to confirm the structure of 9. Both methods began with a Diels-Alder 

reaction to form the central ring to ensure the correct substitution 

pattern. 

The first method is shown in Scheme 1. The first step in the 

synthesis was a Diels-Alder reaction between 1,4-diphenyl-l,3-butadiene 

(10) and cyclohexenone (11) to give 12. This was followed by aromatiza-

tion of 12 to give 13 and reduction of the carbonyl group of 13 to af­

ford 9. 

(p * 

13 9 

Cyclohexenone (11) is not a good dienophile and most Diels-Alder 

12 reactions with this compound are Lewis-acid catalyzed. This was the 

method used here, but the yield of the adduct (12) was low (reaction 6). 

A substantial amount of high molecular weight hydrocarbons was obtained 

and when the reaction was followed by chromatography, the rapid dis­

appearance of the diene (10) was observed while the enone (11) remained 

Scheme 1 
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A1C13 ̂ 

11 

virtually unchanged. Varying the ratios of the reactants and running 

high-temperature, uncatalyzed reactions failed to improve the yield. 

Compound 12 was obtained as a mixture of two stereoisomers formed in 

about a 4 : 1  ratio. Each was characterized by a broad singlet in the 

oleflnic region of the ̂ H-NMR spectrum (Figure 1) and a shift of the 

carbonyl stretching frequency to higher wave numbers in the IR spectrum. 

Surveying the literature on aromatization of Diels-Alder adducts 

13 
suggested a convenient method might be by reaction with sulfur. This 

resulted in complete aromatization to the a-naphthol (14) (reaction 7). 

S8 

Literature on the catalytic hydrogénation of a-naphthols indicated 

that high pressures were required and that the phenol ring might not be 

14 
specifically hydrogenated so another means of aromatizing 12 was 

sought. Dichlorodicyanoquinone, an excellent dehydrogenating agent for 
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Figure 1. Proton NMR spectra (60 MHz) of 5,8-diphenyl-l,2,3,4,4a,5,8,8a-octahydronaphthalen-l-one 
(12)î (a) first isomer to elute from chromatography column, (b) second isomer to elute 
mixed with the first 



www.manaraa.com

133 



www.manaraa.com

134 

13 
some systems, only gave an Intractable product mixture so palladium 

13 
on carbon in refluxing xylenes was tried with limited success. The 

desired product (13) was obtained, but only in low yield (reaction 8). 

Pd-C 
xylenes 

13 15 10 

Other products isolated were 10 and the hydrogenated product, 15. Also, 

starting material (12) was recovered even after days of refluxing. 

1 13 
Compound 13 was identified by its IR, H-NMR and C-NMR spectra. 

13 The C NMR contained three aliphatic signals, a carbonyl peak, and 14 

different aromatic signals. The ̂ H-NMR spectrum showed two triplets at 

6 2.88 and 2.63 coupled to a multiplet at 6 2.08 (Figure 2)* 

Compound 13 was easily converted to the target molecule (9) by 

treatment with lithium aluminum hydride (LAH) and aluminum chloride us­

ing the general procedure of Blackwell and Hlckinbottom (reaction 9).^^ 

Some olefin (16) was formed, which was easily converted to 9 by catalyti 

14 
hydrogénation (reaction 10). 

LAH 

AlCl, 
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Figure 2. Proton NMR spectrum (60 MHz) of 5,8—diphenyl—1—tetralone (13) 



www.manaraa.com

lO 
cJ 

tO 

éo 

Z 
Q. 

X/S OL 

lO 



www.manaraa.com

137 

Hg (1 atm) 

Pd-C ^ 
EtOH 

10. 

1 13 
Compound 9 was identified by its IR, H-NMR, C-NMR and mass 

spectra. The mass spectra indicated the appropriate molecular weight 

13 
and the IR showed the absence of a carbonyl stretching band. The C-

NMR spectrum showed two aliphatic signals and 7 aromatic signals which 

fit the molecule and showed the higher degree of sjnranetry over the 

tetralone (13). The ̂ H-NMR spectrum (Figure 3) indicated the tetralin 

nucleus by two aliphatic multiplets which were indistinguishable from 

the spectrum of the parent compound (1). 

Even though the target molecule (9) was finally obtained, there was 

only a small amount. Thus, since the yields of two of the reactions were 

so low, an alternate synthesis was sought. The naphthalene (17) is a 

known compound and, since the reduction of naphthalene (6) to tetralin 

(1) by catalytic hydrogénation (reaction 11) is convenient,synthesis 

through 17 was chosen. It was felt that hydrogénation of 17 would give 

primarily 9 since the phenyl groups should protect the central ring to 

which they are bound. 

17-19 
There are a few published procedures for the synthesis of 17. 

18 
One of the older ones was chosen since it appeared convenient and high-

yielding. The first step was a Diels-Alder reaction between a very hot 
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PPM,* 

Figure 3. Proton NMR spectrum (.90 MHz) of 5,8-diphenyltetralln (9) 
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17 

(1 atm) 

2 + 
EtOH, H 

CO 11 

6 1 

diene (18) and a hot dienophile (19). The adduct (20) was formed in 

excellent yield (reaction 12). The adduct (20) was hydrolyzed and acid­

ified to give the diacid (21) (reaction 13), which was dehydrated and 

decarboxylated in refluxing acetic acid to give 17 and a g-naphthoic 

acid (22) (reaction 14). Compound 22 was decarboxylated to give more 

of the naphthalene (17) (reaction 15).^^ 

0 

12 

18 19 20 

20 
13 

21 
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HOAc 

1) NaOH ; 
2) Ca(OH)_, A 

Hydrogénation of 17 was accomplished using Adam's catalyst in 

acidic ethanol under conditions similar to those of Price, Enos and 

Kaplan for the reduction of naphthalene (6) (reaction 11).^^ The target 

molecule was indeed the major product, but three other products (23, 24, 

25) were obtained (reaction 16). The reaction was followed by gc and 

H2 (1 atm) 

PC02 + 
EtOH, H 

16. 
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stopped after the yield of 9 reached a maximum. 

Compound 9 was identical in all respects to the product of the 

first synthesis. Compounds 23, 24 and 25 were identified by their mass, 

1 13 
H-NMR and C-NMR spectra. The mass spectra showed how much hydrogen 

13 
was taken up to form each product. The C-NMR spectra showed how many 

different aromatic and aliphatic carbons were in each compound which 

indicated the symmetry of the product. The ̂ H-NMR spectra established 

the structures. Compound 23 was a tetralin like 9; thus, it showed 

similar but different characteristics since one of the phenyl groups 

was hydrogenated. Because of this, compound 23 lacked the symmetry 

13 
found in 9 so 18 signals appeared in the C-NMR spectrum. The lack of 

symmetry was also reflected in the NMR. The aromatic protons of the 

tetralin nucleus in 9 appear as a singlet at 6 7.05 apart from the rest 

of the aromatic signals (Figure 3). In the spectrum of 23, these are 

differentiated and coupled to each other (Figure 4). The signals of the 

two different sets of benzylic hydrogens of 23 are also differentiated 

and appear as multiplets of 6 2.9 and 2.7. The signal at 6 2.9 has a 

shoulder due to the new benzylic proton of the cyclohexyl ring. Other 

protons on this ring give rise to signals between 1 and 2 ppm which are 

not found in the spectrum of 9. The other tetralin isolated (24) is the 

product of hydrogénation of both phenyl groups. This compound has all 

the symmetry of 9. Thus, the aromatic protons of the tetralin nucleus 

appear as a singlet as in 9, just upfield from the chloroform peak 

(Figure 5) and the benzylic protons of the tetralin nucleus have only one 

signal as well. In this spectrum, the signal for the benzylic methines 
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Figure 4. Proton NMR spectrum (300 MHz) of 5-cyclohexyl-8-phenyl-
tetralln (23) 
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Figure 5. 
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Proton NMR spectrum (300 MHz) of 5,8-dicyclohexyltetralin (24) 
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of the cyclohexyl rings is seen as a shoulder to the benzylic signal 

of the tetralin nucleus as in the spectrum of 23 (Figure 4). The other 

side product isolated was l-cyclohexyl-4-phenylnaphthalene (25). Here 

again, the symmetry of the starting material was lost in the formation 

13 of this compound. This is reflected in the C-NMR spectrum which con­

tains 18 signals. The only benzylic proton of 25 is the methine proton 

of the cyclohexyl ring which appears as a multiplet at 6 3.4 (Figure 6). 

Also, the two doublets at 6 8.2 and 7.9 have approximately the same 

chemical shift as a multiplet at 6 8.0 in the spectrum of the starting 

material (17) (Figure 7) which is the best indication that the naph-

20 
thalene nucleus is intact in 25. 

Once a good supply of 5,8-diphenyltetralin (.9) was at hand, pyroly-

sis studies were undertaken. Tetralin (1) was pyrolyzed under the 

standard conditions described by Trahanovsky and Swenson^ in the same 

apparatus that they used to ensure that the technique used could repro­

duce their results. This was accomplished to a reasonable extent (Table 

2). The same compounds were obtained (reaction 1) in roughly the same 

yields. The pyrolysis temperature in their study was slightly higher, 

resulting in a higher conversion and more secondary reactions. Also 

seen in Table 2 are the results of tetralin pyrolysis in the high-vacuum 

apparatus that was required for the pyrolysis of 5,8-diphenyltetralin 

(9). The expected shift due to pyrolysis at a lower pressure towards 

more benzocyclobutene (2) and styrene (3) relative to the dehydrogena-

tion products (.4, 5, and 6) was observed. Because of the lower pressure, 

a higher temperature was required to attain the same amount of conversion 
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Figure 6. Proton NMR spectrum (300 MHz) of 5-cyclohexyl-8-phenyl-
tetralin (25) 
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Figure 7. Proton NMR spectrum (60 MHz) of 1,4-diphenylnaphthalene (17) 
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observed at lower temperatures and lower vacuum. 

Table 2. Product distribution for the FVP of tetralin (1) 

T. J ^ oA Con- „ Products, % Recov-
Conditions „ ery, 

2 3 4 5 6 Others 7^ 

1. 888°C, 0.1 torrd 6 23 15 5 31 20 89 76 
2. 862°C, 0.3 torr 9 18 11 14 32 16 65 79 
3. 1000-1030°C,e 9.9 48.2 12.2 1.4 20.9 7.4 92.8 79 

4 X 10-4 torr 

lumbers are percent of total product found. 

^Total absolute yield of all recovered material. 

^3ased on the amount of recovered 1. 

'^Data are from reference 1. 

Âverage of two pyrolyses. The average deviation in the yields 
of products was ±0.5%. 

When 5,8-diphenyltetralin (9) was pyrolyzed at 1000-1030"C and 4 x 

-5 
10 torr, some thermal chemistry different from that of 1 was observed. 

None of the products were isolated and characterized but analysis of the 

product mixture by gas chromatography/mass spectrometry indicated that 

the major product (28) was due to the net loss of CgH^. This does not 

correspond to any product in the pyrolysis of 1 (Table 3). Also, the 

recovery of material was low. Even though the yields of the hydrogen-

loss products were lower than in the parent system, the ethylene-loss 

products were also formed in diminished yields. The ̂ H-NMR spectrum of 

the product mixture shows the aliphatic multiplets of the starting 

material and three aliphatic singlets at 6 3.93, 3.89 and 3.44 (Figure 8). 
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Table 3. Comparison of tetralin (1) to 5,8-diphenyltetralin (9) in 
the FVP at 1000-1030°C and high vacuum by the net fragment 
lost in formation of each product 

FVP of 9 Net FVP of 1% 

Compound Yield,%b 
fragment lost Compound Yield,% 

26^= 6.0 C3H6 

2.2 (=2*6 

28̂  12.1 C2H6 

29̂  2.7 C2H6 

30̂  0.7 C2H4 2' 7.1 

31̂  3.9 3^^ 34.6 

32̂  2.6 CH4 4̂  8.8 

17® 2.5 2*2 6^ 15.0 

16® 0.7 «2 5"^ 1.0 

33C 0.7 Isomerization — 

9® 10.2 Starting material id 7.2 

Others 3.0 Varies Others 5.3 

Recovery, 
total 47.3 79.0 

*Same data as in entry 3 of Table 2 except yields are reported as 
absolute. 

^Determined by gc by comparison to an internal standard. FID re­
sponse factors were assumed to be 1. 

CThe identities of compounds 26-33 are unknown. Only their molecu­
lar weights are known from gc/ms analysis. 

dïhe products of the pyrolysis of tetralin are benzocyclobutene (2) ,  
styrene (3), indene (4), 1,2-dihydronaphthalene (5), and naphthalene (6). 
They were identified by comparison of the gc data to those of Trahanovsky 
and Swensonl. 

®5,8-Dipheny1-1,2-dihydronaphthalene (16), 1,4-diphenylnaphthalene 
(17), and 5,8-diphenyltetralin (9) were identified by gc/ms and gc re­
tention times. 
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Figure 8. Proton NMR spectrum (90 MHz) of the pyrolvzate from the pyrolysis of 5,8-diphenyl-
tetralin (9) at 1000-1030°C and 4-6 x 10"^ torr 
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DISCUSSION 

In the first synthesis of 5,8-diphenyltetralin, the problems result­

ing in low yields were obvious. In the Diels-Alder reaction (reaction 

6), the diene (10) was reacting with itself to give the high-molecular-

weight-hydrocarbon mixture. The aromatization of the Diels-Alder adduct 

(12) (reaction 8) proceeded with difficulty, no doubt because the central 

ring was inaccessible to the catalyst. Thus, some of the starting 

material was recovered and the retro-Diels-Alder reaction was able to 

compete. Another problem was hydrogénation of the olefinic bond result­

ing in an unreactive cyclohexane ring (15). The hydrogénation of the 

naphthalene (17) showed how inaccessible the central ring is since this 

ring was not hydrogenated in any of the products isolated (reaction 16). 

The comparison of pyrolyses of tetralin (1) found in Table 2 shows 

that the techniques used for this work were adequate to reproduce the 

results of Trahanovsky and Swenson.̂  Thus, there is good reason to be 

confident of the accuracy of these results. The slight differences in 

yields in entries 1 and 2 of Table 2 can be attributed to the difference 

of 26°C in the pyrolysis temperatures. Their temperature was higher, 

resulting in a higher conversion and more secondary reactions. 

The results of the high-vacuum tetralin pyrolysis (entry 3, Table 

2) followed the trend seen in Table 1. That is, at higher vacuum, the 

loss of ethylene (reaction 2) is competitive with loss of hydrogen 

(reaction 3). It was surprising that this held true even at a high 

conversion. The only effect that this seemed to have was to increase 
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the secondary reactions as evidenced by the high yield of styrene (3) 

and naphthalene (6). 

The results of the 5,8-diphenyltetralin (9) pyrolysis are incon­

clusive since there are new reactions and a low recovery. If the 

products of CgHg-loss (27-29) were secondary products from the primary 

ethylene-loss product (34) (Scheme 2), then one could say that there 

was a substantial change in the ratio of ethylene-loss to hydrogen-loss. 

This would, of course, support the surface-catalysis theory. However, 

the mechanism of formation of the C2Hg-loss products is uncertain. 

One cannot even look only at the ethylene-loss products (31, 32) vs. 

the hydrogen-loss products (17, 18, 33), since some of the ethylene-

loss product might have been diverted to the Ĉ Hg-loss product. 

Proposed structures for compounds 27, 28, 29 and 31 are seen in 

Scheme 2. Although their identity is unknown, support for these struc­

tures is found in the ^H-NMR spectrum of the product mixture (Figure 

8). The singlet at 6 3.44 is what one would expect for diphenylbenzo-

cyclobutene (31) since the chemical shift for the parent is 6 3.17. 

The fluorene structures shown for 28 (the major product) and 29 fit the 

NMR of the product mixture (Figure 8) since the methylene signals of 

these compounds should appear just downfield from the benzocyclobutene 

signal,21 which is where the largest singlet and a close neighbor appear 

(6 3.89 and 3.93, respectively). 
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EXPERIMENTAL 

General 

The low-vacuum pyrolysis apparatus was the one used by Trahanovsky 

and Swenson.^ The apparatus and Its use have been described else-

22 
where. The high-vacuum pyrolysis apparatus was the one described in 

part I of this thesis (pp. 39a-39b). Besides the oil-diffusion pumping 

system of the high vacuum apparatus, the only major difference in the two 

apparatus is the dimensions, the high-vacuum apparatus having the larger 

diameter. The pyrolysis temperature was measured with an Omega chromel-

alumel potentiometer by placing the thermocouple wire on the outside of 

the tube at the center of the hot zone. Gas chromatography (gc) analysis 

was performed on a Hewlett-Packard 5840A gc equipped with a micro­

processor and a flame-ionization detector (FID). Yields of pyrolysis 

products were determined by gc using biphenyl as an internal standard. 

For tetralin (1) pyrolysis, FID response factors for major products were 

23 
those determined by Trahanovsky and Swenson. For 5,8-diphenyl-

tetralin (9) pyrolysis, all FID response factors were assumed to be 1. 

Melting points were determined with a Thomas-Hoover capillary-melting-

poing apparatus and are uncorrected. Catalytic hydrogénations were 

carried out using a 1 atmosphere apparatus like the one described by 

24 
Augustine. 

Infrared spectra were recorded on a Beckman Acculab II spectro­

photometer. ^H-NMR spectra were obtained on either a Varian EM360, A60, 

13 
a JEOL FX90Q or a Bruker WM300. C-NMR spectra were recorded on the 
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JEOL FX90Q. Chemical shifts are reported in 6 units downfield from 

TMS internal standard. Commercially available compounds and their 

sources are listed in Table 4. 

5,8-Diphenyl-l,2,3,4,4a,5,8,8a-octahydronaphthalen-l-one (12) 

This compound was prepared according to the general procedure of 

12 
Fringuelli _et Freshly-distilled cyclohexenone (11) (6.7 g, 68 

mmole) was stirred for 40 min at 25°C under Ng with AlClg (8.0 g, 60 

mmole) in toluene (250 mL) which had been dried by azeotropic distilla­

tion. l,4-Diphenyl-l,3-butadiene (10) (31 g, 150 mmole) was added as a 

solid, turning the gray cyclohexenone - AlCl̂  mixture to yellow. The 

resulting mixture was stirred at 70°C under Ng and analyzed periodically 

by gc by removing aliquots and working them up in a fashion similar to 

that described below for the main body. The gc analysis showed a 

dramatic drop in the amount of 10 within 24 h while the amount of 11 

changed little. The reaction mixture was stirred for an additional 32 

h, then quenched with (6N). The organic layer was washed with 

water and brine and dried over MgSÔ . Filtration and concentration 

yielded 43 g of residue which was chromatographed (silica gel, 5% ether 

in hexanes elution). The majority of product was a mixture of high-

molecular-weight hydrocarbons as judged by gc and IR: several components 

eluted as a body in the gc with retention times much longer than the 

ketone adducts; analysis of the mixture by IR showed no carbonyl stretch­

ing bands. Fractions which contained the first ketone to elute (k #1) 

were concentrated to give 2.9 g of one Isomer of 12 (14% yield): IR 
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Table 4. Commercially available chemicals 

Compound 

Alumina (neutral, activity I) 
Aluminum chloride 
Benzene 
Biphenyl 
Calcium hydroxide 
Chloroform 
Chloroform-d 
Cy clohexenone 
Diethyl ether 
Dichlorome thane 
Diphenylbutadiene 
Ethanol 
Ethyl acetate 
Hexanes 
Isobenzofuran 
Lithium tetrahydroaluminate (LAH) 
Magnesium sulfate 
Malaic anhydride 
Methanol 
Nitrogen (g) 
Nitrogen (£) 
Palladium on Carbon (5%) 
Pentane 
Petroleum ether (bp 30-60*C) 
Platinum oxide (Adam's catalyst) 
Potassium carbonate 
Potassium hydroxide 
Silica gel 
Sodium chloride 
Sodium hydroxide 
Sulfur 
Sulfuric acid 
Tetralin 
Toluene 
Xylenes 

Source 

J. T. Baker Chemical Co. 
Fisher Scientific Co. 
Fisher 
Eastman Kodak Co. 
J. T. Baker 
Fisher 
Aldrich Chemical Co. 
Wittaker Corporation 
Fisher 
Fisher 
Aldrich 
Worum Chemical Co. 
Fisher 
Fisher 
Aldrich 
Morton Thiokol, Inc. 
J. T. Baker 
J. T. Baker 
Fisher 
Quickway, Inc. 
Air Products and Chemicals, Inc. 
The Matheson Co., Inc. 
Mallinckrodt, Inc. 
Fisher 
Aldrich 
J. T. Baker 
J. T. Baker 
E. Merck, Darmstadt, Germany 
J. T. Baker 
J. T. Baker 
J. T. Baker 
Captree Chemical Corp. 
Aldrich 
Fisher 
Mallinckrodt 

(neat) 1715, 1608, 1497, 1458, 765, 705 cm"^; ^H-NMR (60 MHz, CDCl^) 

6 7.47 (m, 10 H), 5.90 (m, 2 H), 4.10 (m, 1 H), 3.59 (m, 1 H), 2.94-

0.90 (m, 8 H). Fractions which contained the second ketone to elute 
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(k #2) also contained k #1 (1:1 mole ration by NMR). These were 

concentrated to yield 1.7 g of 12 as a mixture of isomers: IR (neat) 

1715 cm NMR (60 MHz, CDClg): 6 6.22 (m), other signals overlap 

with those of k //I, taken together, the peaks integrated the same as 

k #1: 6 7.4 (m, 20 H), 6.22 (m, 2 H), 5.90 (m, 2 H), 4.20-0.8 (m, 

16 H). 

5,8-Diphenyl-l-naphthol (14) 

25 A general procedure of Fieser et was followed. The diphenyl-

enone (12) (168 mg, 0.56 mmole) and Sg (54.8 mg, 1.71 mmole) were com­

bined in a 5-mL flask and heated to 225°C under Ng for 75 min. The 

heat was withdrawn after gas evolution had ceased. The product mixture 

was taken up in ether and washed with KOH (5%). The aqueous layer was 

acidified, causing a precipitate to form. Extraction with ether, dry­

ing over MgSO^, filtration and evaporation of solvent gave 1.2 mg of 

14. The organic layer was dried over MgSO^, filtered and concentrated 

to give 163 mg of residue which was chromatographed (silica gel, 30% 

CHgClg in hexanes elution). Fractions containing the major component 

were combined and concentrated to give 20.7 mg of 14 (total yield 13.7%) 

which was recrystallized from ethanol-water: mp 132.5-134.5°C; IR 

(CDClg) 3530 cm"̂ ; NMR (60 MHz, CDClg)^ 7.57-7.14 (m, 14 H), 6.90 

(d of d, = 7 Hz, Jg = 2 Hz, 1 H), 5.46 (s, 1 H, disappears with D̂ O 

exchange); NMR (22.5 MHz, CDCl^)*? 153.2, 141.5, 140.8, 135.7, 134.0, 

130.1, 129.5, 129.0, 128.6, 128.2, 128.0, 127.3, 126.8, 126.1, 119.3, 

111.9. 
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5,8-Diphenyl-l,2,3,4-tetrahydronaphthalen-l-one (13) 

A general procedure of Mosettig and Duval was followed.The 

diphenylenone (12) (36.g) as a mixture of isomers was dissolved in 

xylenes (250 mL) and stirred with 5% Pd on C (2.3 g) for 4 days with 

refluxing under Ng. The catalyst was filtered and the solvent was 

distilled to give a residue which was chromatographed (silica gel, 40% 

ether in hexanes elution). Fractions containing 13 were concentrated 

to give 1.5 g of a yellow oil. This was only 50% 13 by TLC, so it 

was chromatographed again. (TLC, silica gel, 20% ether in hexanes 

elution.) The band that contained 13 yielded 0.5 g of 13 after re-

crystallization from methanol: mp 178-179°C, IR 1695 cm NMR 

(60 MHz, CDC1^)6 7.50-7.16 (m, 12 H), 2.88 (t, J = 6 Hz, 2 H), 2.63 

(t, J = 6 Hz, 2 H), 2.08 (m, J = 6 Hz, 2 H); NMR (22.5 MHz, CDCl^) 

Ô 199.0, 143.1, 142.9, 140.9, 140.6, 132.9, 132.1, 129.7, 129.2, 

128.3, 128.2, 127.8, 127.3, 126.8, 126.5, 40.1, 28.9, 22.9. Also 

isolated from the reaction mixture was l,4-diphenyl-l,3-butadiene (10) 

identified by its IR and NMR spectra which were identical to literature 

spectra. Another compound isolated was 5,8-diphenyl-l-decalone (15) 

contaminated with 13 (0.5 g): mp 169-175°C; IR (CHCl^) 1720 cm 

^H NMR (60 MHz, 0001^)6 7.32 (br. s, 10 H), 3.1-1.2 (m, 14 H); NMR 

(22.5 MHz, CDClg)̂  211.1 (s), 146.2 (s), 145.0 (s), 128.5 (d, J = 160 

Hz), 128.1 (d, J = 160 Hz), 127.2 (d, J = 160 Hz, 2 C), 126.4 (d, J = 

160 Hz), 125.8 (d, J = 160 Hz), 60.0 (d, J = 124 Hz), 51.3 (d, J = 124 

Hz), 50.7 (d, J = 124 Hz), 42.9 (t, J = 128 Hz), 42.5 (d, J = 128 Hz), 

35.2 (t, J = 128 Hz), 34.6 (t, J = 128 Hz), 31.0 (t, J = 135 Hz), 27.5 
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(t, J = 128 Hz). 

5,8-Diphenyl-l,2,3,4-tetrahydronaphthalene (9), Method 1 

This compound was prepared following a general procedure of Black-

well and Hickinbottom.̂  ̂ A suspension of LAH (41.3 mg, 1.09 mmole) in 

dry ether (1 mL) was stirred under Ng while AlClg (290 mg, 2.17 mmole) 

was added as an ether solution (2 mL). The tetralone (13) (185 mg, 

0.62 mmole) was added to the freshly-prepared reagent as an ether solu­

tion (20 mL) and the mixture was stirred with refluxing for 2 h. The 

reaction was quenched with ethyl acetate (2 mL) and poured into cold 

HgSO  ̂(20%). The solid that resulted dissolved into the ether upon 

shaking. The layers were separated and the organic layer was dried 

over MgSQ̂ . After filtration and concentration, the product mixture 

was chromatographed (TLC, silica gel, CHgClg elution). The band that 

contained 9 also contained 5,8-diphenyl-l,2-dihydronaphthalene (16) as 

evidenced by ^H NMR: the olefinic protons appeared at 6 6.57 (d, J = 

10 Hz, 1 H), 6.00 (d of t, = 10 Hz, = 5 Hz, 1 H). The mixture of 

9 and 16 was dissolved in 95% ethanol (25 mL) and stirred with 5% Pd on 

C (70 mg) under one atmosphere of H^ until no more Hg was consumed (1 

h). The catalyst was filtered and the solvent was distilled until 5 

mL remained which was taken up in ether. The ether solution was washed 

with water and brine, dried over MgSÔ , filtered and concentrated. The 

residue was chromatographed (TLC, silica gel, CHgClg elution) to give 

120 mg of 9 (68% yield) which was recrystallized from methanol: mp 

56-59°C, IR (KBr) cm~̂ ; NMR (90 MHz, 00013)6 7.39-7.35 (br. s, 10 H) 

7.09 (s, 2 H), 2.66 (m, 4 H), 1.68 (m, 4 H); NMR (22.5 MHz, CDCl^) 
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6 142.2, 141.3, 135.2, 129.3, 128.0, 126.8, 126.7, 28.6, 23.0; MS 

(70 eV) 284 (100), 283 (34), 256 (77), 241 (57), 207 (35), 178 (38), 

165 (51), 126 (32), 91 (30), 57 (34); calculated 284.15650, 

measured 284.15573, error; -2.7 ppm. 

1,4-Diphenyl-l,4-oxo-l,2,3,4-tetrahydronaphtho-
2,3-dloic Acid Anhydride (20) 

This compound was prepared following the procedure of Dufraisse and 

18 
Priou. Diphenylisobenzofuran (18) (1.35 g, 5.0 mmole) was mixed with 

maleic anhydride (19) (0.52 g, 5.3 mmole) in xylenes (25 mL). The 

greenish-yellow mixture was stirred at 115°C under Ng for 1 h turning 

the greenish color to yellow. It was stirred at room temperature over­

night affording a white slurry. The solid was filtered and washed with 

cold xylenes to give 1.77 g. Concentration of the supernatant solution 

under vacuum (bath 50°C) afforded an additional 0.1 g of 20 (99%+ yield): 

mp 271-277°C (lit.^® mp 270-274°C). 

1,4-Diphenyl-l,4-oxo-l,2,3,4-tetrahydronaphtho-2,3-dioic Acid (21) 

The anhydride (20) was stirred with NaOH (4 M, 125 mL) for 4 days at 

room temperature, resulting in a clear aqueous solution and a more-

dense salt which dissolved upon dilution. The solution was carefully 

neutralized with HgSO^ (6 N) causing a precipitate to form which was 

extracted with ether. The ether solution was dried over MgSO^, filtered 

and concentrated to give 1.4 g of the diacid (21) (90% yield). 
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1,4-Diphenylnaphthalene (17) and l,4-Diphenyl-2-naphthoic Acid (22) 

The diacld (21) (1.4 g) was dissolved in glacial acetic acid (100 

mL). The solution was heated to reflux under Ng for 7 h following the 

18 
procedure of Dufraisse and Priou. Most of the solvent was distilled 

and the residue was partitioned between NaOH (1.75 M, 300 mL) and 

benzene. The organic phase was dried over MgSÔ  and filtered. Removal 

of the solvent gave 0.5 g of 17. Recrystallization from ethanol 

1 R 
afforded 0.4 g of 17 (39% yield): mp 131-134°C (lit.^° mp 135-136°C), 

NMR (60 MHz, 00013)6 7.98 (m, 2 H), 7.50-7.10 (m, 14 H). Acidifica­

tion of the aqueous phase with HgSO^ (6 N) caused a precipitate to 

form which was extracted with ether. The ether solution was dried over 

MgSÔ , filtered and concentrated to give 0.42 g of 22 (36% yield): mp 

18 1 
220-223°C (lit. mp 225-226°C), H NMR (60 MHz, acetone-dg)ô 7.85 (s, 

1 H), 7.55-7.12 (m, 14 H), 4.97 (br. s, 1 H). 

1,4-Diphenylnaphthalene (17) from l,4-Diphenyl-2-
naphthoic Acid (22) 

Following the procedure of Weiss e_t 22 (0.42 g) was dissolved 

in dilute NaOH (30 mL) and stirred while NaOH (conc.) was added, which 

caused a precipitate to form. After the solid settled, the supernatant 

liquid was decanted. The solid (0.4 g) was dried and mixed with 

Ca(0H)2 (0.8 g). The mixture was heated with a bunsen burner in a 

distillation apparatus with a flow of Ng. The product that distilled 

was chromatographed (TLC, silica gel, hexanes elution) to afford 0.18 g 

of 17 (50% yield): mp 132-135°C (lit.̂  ̂mp 135-137°C). 
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5,8-Diphenyltetralin (9), Method 2 

Following a general procedure of Price eit 1,4-diphenylnaph-

thalene (17) (0.5 g) was mixed with PtOg (150 mg) in absolute ethanol 

(100 mL). HCl (5 drops), which was prepared by bubbling HCl (g) 

through absolute ethanol for 5 min, was added and the mixture was 

stirred under one atmosphere of Hg. Aliquots (0.25 mL) were taken 

periodically, shaken with analyzed by gc. After 102 h, the 

concentration of 9 stopped increasing and uptake of had slowed. The 

ethanol was removed by distillation and the residue was taken up in 

CHClg, shaken with KgCOg and filtered. Evaporation of the solvent gave 

0.45 g which was chromatographed (neutral alumina, activity grade I, 

pet. ether elution). Four products were isolated (9, 23, 24, and 25). 

Compound 9 (0.21 g) was recrystallized from methanol: mp 56-59°C, when 

this product was mixed with crystals from the first preparation the melt-

1 13 
ing point was not depressed; H NMR (90 MHz, CDClg) and C NMR (22.5 

MHz, CDClg) were identical to the spectra of 9 from the first method of 

preparation. 5-Cyclohexyl-8-phenyltetralln (23) (0.12 g): ^H NMR (300 

MHz, CDCl3)6 7.36-7.23 (m, 5 H), 7.12 (d, J = 7.92 Hz, 1 H), 7.05 

(d, J = 7.92 Hz, 1 H), 2.84-2.76 (m, 3 H), 2.62-2.58 (m, 2 H), 1.85-

1.75 (m, 6 H), 1.67-1.60 (m, 2 H), 1.46-1.26 (m, 6 H); NMR (22.5 

MHz, CDCl^)^ 144.9, 142.4, 139.6, 134.6, 134.2, 129.3, 128.7, 128.3, 

127.8, 127.0, 126.3, 122.6, 39.2, 34.2, 33.8, 29.1, 27.2, 26.4, 26.2, 

23.2, 22.8. 5,8-Dicyclohexyltetralin (24) (0.04 g): ^H NMR (300 MHz, 

CDCl3)ô 7.06 (s, 2 H), 2.79-2.64 (m, 6 H), 1.84-1.73 (m, 12 H), 1.58-

1.20 (m, 12 H). NMR (22.5 MHz, CDCl])̂  143.0, 134.1, 122.7, 39.1, 
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34.0, 27.4, 26.5 (br., 2 unresolved peaks), 23.1. l-Cyclohexyl-4-

phenylnaphthalene (25) (0.01 g): NMR (300 MHz, 0001̂ )6 8.18 (d, 

J = 8.6 Hz, 1 H), 7.92 (d, J = 8.2 Hz), 7.55-7.34 (m, 9 H), 3.41-3.34 

(m, 1 H), 2.15-2.03 (m, 2 H), 2.00-1.83, (m, 2 H), 1.75-1.51 (m, 4 H), 

1.43-1.25 (m, 2 H); NMR (22.5 MHz, CDCl^)ô 143.4, 141.3, 138.3, 

132.1, 131.6, 130.2, 129.4, 128.2, 127.1, 126.8, 125.5, 125.3, 123.4, 

121.9, 39.4, 34.3, 27.4, 26.6. 

FVP of Tetralin (1) in the Low-Vacuum Apparatus 

Tetralin (1) (179.0 mg), which had been distilled prior to use, 

was pyrolyzed at 862°C and 0.3 torr. The sample was kept at 20°C by 

immersion in a Dewar flask filled with cold tap water. Transfer was 

complete in 3 h. After pyrolysis, the system was filled with Ng and 

the product condenser was allowed to warm. Before it reached 0°C, 

the product mixture was taken up in pentane (8 mL) and added to the 

internal standard, biphenyl (17.4 mg). The mixture was analyzed by gc 

using a 3' x 1/8" column packed with 3% OV-225. Products were identi­

fied by their retention times and relative amounts by comparison to gc 

traces of Trahanovsky and Swenson who had identified the major com­

ponents. The results are tabulated in Table 2. 

FVP of Tetralin (1) in the High-Vacuum Apparatus 

Tetralin (1) (133.3 rag), which had been distilled prior to use, 

was pyrolyzed at 1000-1030°C and 3.6 x 10 ̂  torr. Prior to evacuation, 

the system was filled with N̂ , the sample was cooled to -34°C and the 

product condenser was cooled to -196°C. Transfer was complete in 4.5 h. 
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The product mixture was worked up and analyzed in a fashion identical 

to that for the low-vacuum pyrolysis. The amount of biphenyl used was 

17.2 mg. The pyrolysis was repeated using 136.9 mg of 1 and 24,4 mg 

of biphenyl. Transfer of material took 6.5 h in this experiment. The 

results of the two pyrolyses were averaged and the average tabulated 

(Table 2). 

FVP of 5,8-Diphenyltetralin (9) in the High-Vacuum Apparatus 

Compound 9 (45.1 mg) was pyrolyzed at 1000-1030"C and 4-6 x 10 ̂  

torr. The sample was warmed to 60°C by insulating the sample chamber 

_5 
such that the pressure of the system remained in the 4-6 x 10 torr 

range. Transfer was complete in 6.5 h. The quartz chips were carbon­

ized and brown decomposition product was deposited just outside the 

oven. After pyrolysis, the system was filled with Ng and the product 

condenser was allowed to warm to room temperature. The product mixture 

was taken up in benzene (8 mL) and analyzed by gc with a 30 m capillary 

column coated with SP-2100. Biphenyl (10.2 mg) was added and the solu­

tion was analyzed again by gc to determine the yields of products and 

by gc/ms to determine their molecular weights. The gc and ms data are 

given in Table 5. After gc analysis, the solvent was evaporated and 

the residue was analyzed by NMR (90 MHz, CDCl^) (Figure 8). 
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Table 5. GC and MS data for products of FVP of 5,8-diphenyltetralin 
(9) 

Com­
pound 

Ret. time, 
min 

Yield, 
% 

MS (70 eV), m/e (% of base peak) 

26 26.56 6.0 242 (100) , 165 (37), 120 (69) 

33 26.95 0.7 284 (70), 256 (77), 241 (75), 120 (100) 

9 27.36 10.2 284 (100) , 241 (25), 165 (46), 120 (88) 

31 27.66 3.9 256 (100) , 239 (29), 126 (88), 120 (89) 

30 28.65 0.7 256 (100) , 239 (14), 126 (61), 120 (60) 

17 28.82 2.5 280 (100) , 202 (43), 138 (73), 126 (41) 

27 30.55 2.2 254 (100) , 207 (10), 127 (65), 113 (33) 

32 31.14 2.6 268 (100) , 252 (22), 133 (82), 126 (85) 

28 31.39 12.1 254 (69), 126 (100), 113 (32), 101 (13) 

29 31.56 2.7 254 (68), 126 (100), 113 (27), 101 (11) 

16 32.06 0.7 282 (54), 207 (71), : 126 (91), 73 (100) 
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GENERAL SUMMARY 

Flash vacuum pyrolysis (FVP) has been used successfully to discover 

some novel thermal reactions. These provide new insights into some 

fundamental chemistry. 

In part I, benzocyclobutene (9) and its [4+4] dimer, 1,5-dibenzo-

cyclooctadiene (14) were found to give anthracene (7) as a major product. 

The similarity of the product mixtures is taken as evidence that essen­

tially the same mechanism is operating in both cases. By labeling 

studies, the [4+2] spirodimer (14') appears to be an intermediate. The 

fragmentation by which 14' is thought to give 7 is new and analogous 

to the retroene reaction. The proposed mechanism lends new insight into 

the mechanism of the pyrolytic formation of benzene and higher 

aromatics. 

In part II, vinylketene (66), prepared by FVP, was characterized 

1 13 
by low-temperature H- and C-NMR spectroscopy. It was found to 

dimerize by a novel [4+2] cyclo-addition reaction. The resulting 6-

lactone (90) was isomerized to a mixture of sibirinone (91) and 6-allyl-

a-pyrone (92). Acid-catalyzed isomerization gave primarily 91 (9:1 mole 

ratio). When vinylketene was mixed with cyclopentadiene, the [2+2] 

cycloadduct (72) was formed with high regio- and stereospecificity. 

Compound 72 was isomerized to bicyclo[4.2.1]nona-3,7-dien-2-one (97). 

Part III described an attempt to determine the effect of surface 

catalysis in FVP. The synthesis of 5,8-diphenyltetralin (9) was 

described. Comparison of the pyrolysis of 9 to that of the parent com­

pound, tetralin (1) was not possible since the thermal chemistry of 9 
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was found to be too different from that of 1. The major product of 

the pyrolysis of 9 at 1000°C and 10 ̂  torr was due to the loss of 

while 1 gave styrene as the major product by the loss of 

under similar conditions. 
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